Skip to main content
Log in

Seasonal variation of the satellite-derived phytoplankton primary production in the Kara Sea

  • Marine Biology
  • Published:
Oceanology Aims and scope

Abstract

Seasonal variation of the integrated primary production (IPP) and surface chlorophyll (Chl0) in different regions of the Kara Sea was studied from satellite data obtained by the MODIS-Aqua colour scanner and averaged for 2003–2015. The minimum variation of Chl0 concentration during the growing season (from April to October) was 1.5 times in southwestern region and 2 times in the northern region of the sea. It was found that the Chl0 concentration increased slightly in all regions by the end of the growing season. The maximum IPP value recorded in June coincided with the peak level of photosynthetically active radiation (PAR) and maximum river discharge. The IPP value varied in a wider range compared with the Chl0 concentration. The ratio of the maximum and minimum monthly average IPP values varied from 8.9 times in Southwestern region to 11.7 times in the Northern region of the sea. The average increase in the Chl0 concentration was 1.7 times (from 0.78 mg/m3 in April to 1.29 mg/m3 in October). The IPP value varied by a factor of 10.7 (from 26 mg C/m2 per day in October to 279 mg C/m2 per day in June). The article also discusses the influence of water column stratification, the concentration of nutrients, the PAR level, and river discharge on the seasonal IPP dynamics in the Kara Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Bobrov, V. M. Savinov, and P. R. Makarevich, “Chlorophyll and primary production,” in Ecology and Biological Resources of the Kara Sea (Kola Scientific Center, Academy of Sciences of Soviet Union, Apatity, 1989), pp. 45–50 (in Russian).

    Google Scholar 

  2. V. I. Vedernikov, A. B. Demidov, A.I. Sud’bin, “Primary production and chlorophyll in the Kara Sea in September 1993”. Oceanology (Engl. Transl.) 34, 630–640 (1994).

    Google Scholar 

  3. A. A. Vetrov and E. A. Romankevich, “Primary production and fluxes of organic carbon to the seabed in the Russian Arctic seas as a response to the recent warming,” Oceanology (Engl. Transl.) 51, 255–266 (2011).

    Google Scholar 

  4. M. E. Vinogradov, V. I. Vedernikov, E. A. Romankevich, and A. A. Vetrov, “Components of the carbon cycle in the Russian Arctic seas: primary production and flux of Corg from the photic layer,” Oceanology (Engl. Transl.) 40, 204–215 (2000).

    Google Scholar 

  5. M. E. Vinogradov, E. A. Shushkina, L. P. Lebedeva, et al., “Mesoplankton of the Eastern part of Kara Sea and estuaries of Ob and Yenisei rivers,” Okeanologiya (Moscow) 34, 716–723 (1994).

    Google Scholar 

  6. E. S. Vlasova, MSc Dissertation in Biology (Moscow State Univ., Moscow, 2007) (in Russian).

    Google Scholar 

  7. A. B. Demidov, S. A. Mosharov, V. A. Artemyev, A. N. Stupnikova, U. V. Simakova, and S. V. Vazyulya, “Depth-integrated and depth-resolved models of Kara Sea primary production,” Oceanology (Engl. Transl.) 56, 515–526 (2016).

    Google Scholar 

  8. A. G. Zatsepin, P. O. Zavialov, V. V. Kremenetskiy, S. G. Poyarkov, and D. M. Soloviev, “The upper desalinated layer in the Kara Sea,” Oceanology (Engl. Transl.) 50, 657–667 (2010).

    Google Scholar 

  9. O. I. Koblentz-Mishke and V. I. Vedernikov, “Primary production,” in Biology of an Ocean, Vol. 2: Biological Productivity of an Ocean (Nauka, Moscow, 1977), pp. 183–209 (in Russian).

    Google Scholar 

  10. O. A. Kuznetsova, O. V. Kopelevich, S. V. Sheberstov, et al., “Analysis of the chlorophyll concentration in the Kara Sea according to MODIS-AQUA satellite scanner,” Issled. Zenli Kosm., No. 5, 21–31 (2013) (in Russian).

    Google Scholar 

  11. S. A. Mosharov, “Distribution of the primary production and chlorophyll a in the Kara Sea in September of 2007,” Oceanology (Engl. Transl.) 50, 884–892 (2010).

    Google Scholar 

  12. S. A. Mosharov, A. B. Demidov, and U. V. Simakova, “Peculiarities of the primary production process in the Kara Sea at the end of the vegetation season,” Oceanology (Engl. Transl.) 56, 84–94 (2016).

    Google Scholar 

  13. I. N. Sukhanova, M. V. Flint, S. A. Mosharov, and V. M. Sergeeva, “Structure of the phytoplankton communities and primary production in the Ob River estuary and over the adjacent Kara Sea shelf,” Oceanology (Engl. Transl.) 50, 743–758 (2010).

    Google Scholar 

  14. M. V. Flint, T. N. Semenova, E. G. Arashkevich, I. N. Sukhanova, V. I. Gagarin, V. V. Kremenetskiy, M. A. Pivovarov, and K. A. Soloviev, “Structure of the zooplankton communities in the region of the Ob River’s estuarine frontal zone,” Oceanology (Engl. Transl.) 50, 766–779 (2010).

    Google Scholar 

  15. D. Antoine, J.-M. André, and A. Morel, “Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll,” Global Biogeochem. Cycles 10 (1), 57–69 (1996).

    Article  Google Scholar 

  16. T. P. Boyer, J. I. Antonov, O. K. Baranova, et al., World Ocean Database 2013, NOAA Atlas NESDIS 72 (Silver Spring, MD, 2013).

    Google Scholar 

  17. S. Bélanger, M. Babin, and J.-E. Tremblay, “Increasing cloudiness in Arctic damps the increase in phytoplankton primary production due to sea ice receding,” Biogeosciences 10 (6), 4087–4101 (2013).

    Article  Google Scholar 

  18. M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, “Carbon-based ocean productivity and phytoplankton physiology from space,” Global Biogeochem. Cycles 19 (1), (2005). doi 10.1029/2004GB002299

    Google Scholar 

  19. D. Blondeau-Patissier, J. Gower, A. Dekker, et al., “A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans,” Progr. Oceanogr. 123 (2), 123–144 (2014).

    Article  Google Scholar 

  20. L. Bopp, P. Monfray, O. Aumont, et al., “Potential impact of climate change on marine export production,” Global Biogeochem. Cycles 15 (1), 81–99 (2001).

    Article  Google Scholar 

  21. J. Campbell, D. Antoine, R. Armstrong, et al. “Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance,” Global Biogeochem. Cycles 16, (2002). doi 10.1029/2001GB001444

  22. J. E. Cloern and A. D. Jassby, “Complex seasonal patterns of primary producers at the land-sea interface,” Ecology Lett. 11, 1294–1303 (2008).

    Article  Google Scholar 

  23. E. C. Carmack, “The alpha/beta ocean distinction: a perspective on freshwater fluxes, convection, nutrients and productivity in high-latitude seas,” Deep Sea Res., Part II 54 (23–26), 2578–2598 (2007).

    Article  Google Scholar 

  24. E. C. Carmack, R. W. Macdonald, and S. Jasper, “Phytoplankton productivity on the Canadian shelf of the Beaufort Sea,” Mar. Ecol.: Progr. Ser. 277, 37–50 (2004).

    Article  Google Scholar 

  25. G. Cauwet and I. Sidorov, “The biogeochemistry of the Lena River,” Mar. Chem. 53 (3–4), 211–227 (1996).

    Article  Google Scholar 

  26. L. W. Cooper, R. Benner, J. W. McClelland, et al., “Linkages among runoff, dissolved organic carbon and the stable oxygen isotope composition of seawater and other water mass indicators in the Arctic Ocean,” J. Geophys. Res.: Biogeosci. 110, G02013 (2005). doi 10.1029/2005JG000031

    Article  Google Scholar 

  27. J. C. Comiso and F. Nishio, “Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data,” J. Geophys. Res.: Oceans 113, C02S07 (2008). doi 10.1029/2007JC0043257

    Google Scholar 

  28. D. H. Cushing, “The seasonal variation in oceanic production as a problem in population dynamics,” J. Cons. Perm. Int. Explor. Mer. 24, 455–464 (1959).

    Article  Google Scholar 

  29. Y. Dandonneau, P.-Y. Deschamps, J.-M. Nicolas, et al., “Seasonal and interannual variability of ocean color and composition of phytoplankton communities in the North Atlantic, equatorial Pacific and South Pacific,” Deep Sea Res., Part II 51 (1–3), 303–318 (2004).

    Article  Google Scholar 

  30. A. B. Demidov, S. A. Mosharov, and P. N. Makkaveev, “Patterns of the Kara Sea primary production in autumn: biotic and abiotic forcing of subsurface layer,” J. Mar. Sys. 132, 130–149 (2014).

    Article  Google Scholar 

  31. J. K. Egge and D. L. Aksnes, “Silicate as regulating nutrient in phytoplankton competition,” Mar. Ecol.: Progr. Ser. 83, 281–289 (1992).

    Article  Google Scholar 

  32. R. W. Eppley and B. J. Peterson, “Particulate organic matter flux and plankton new production in the deep ocean,” Nature 282, 677–680 (1979).

    Article  Google Scholar 

  33. M. Edwards and A. J. Richardson, “Impact of climate change on marine pelagic phenology and trophic mismatch,” Nature 430, 881–884 (2004).

    Article  Google Scholar 

  34. P. Falkowski, “Light-shade adaptation and assimilation numbers,” J. Plankton Res. 3, 203–216 (1981).

    Article  Google Scholar 

  35. R. Frouin, J. McPherson, K. Ueyoshi, and B. A. Franz, “A time series of photosynthethetically available radiation at the ocean surface from SeaWiFS and MODIS data,” Proc. SPIE, (2012). doi 10.1117/1112.981264

    Google Scholar 

  36. T. R. Fisher, E. R. Peele, J. W. Ammerman, and L. W. J. Harding, “Nutrient limitation of phytoplankton in Chesapeake Bay,” Mar. Ecol.: Progr. Ser. 82, 51–63 (1992).

    Article  Google Scholar 

  37. V. V. Gordeev, J. M. Martin, I. S. Sidorov, and M. V. Sidorova, “A reassessment of the Eurasian river input of water, sediment, major elements and nutrients to the Arctic Ocean,” Am. J. Sci. 296, 664–691 (1996).

    Article  Google Scholar 

  38. D. Hanzlick and K. Aagaard, “Freshwater and Atlantic water in the Kara Sea,” J. Geophys. Res.: Oceans 85 (9), 4937–4942 (1980).

    Article  Google Scholar 

  39. W. G. Harrison and G. F. Cota, “Primary production in the polar waters: relation to nutrient availability,” Polar Res. 10 (1), 87–104 (1991).

    Article  Google Scholar 

  40. D. A. Hansell, D. Kadko, and N. R. Bates, “Degradation of terrigenous dissolved organic carbon in the Western Arctic Ocean,” Science 304, 858–861 (2004).

    Article  Google Scholar 

  41. V. Huber, R. Adrian, and D. Gerten, “Phytoplankton response to climate warming modified by trophic state,” Limnol. Oceanogr. 53 (1), 1–13 (2008).

    Article  Google Scholar 

  42. R. M. Holmes, J. W. McClelland, B. J. Peterson, et al., “Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas,” Estuaries Coasts 35, 369–382 (2012).

    Article  Google Scholar 

  43. R. M. Holmes, J. W. McClelland, P. A. Raymond, et al., “Lability of DOC transported by Alaskan rivers to the Arctic Ocean,” Geophys. Res. Lett. 35, L03402 (2008). doi 10.1029/2007GL032837

    Article  Google Scholar 

  44. S. Henson, H. Cole, C. Beaulieu, and A. Yool, “The impact of global warming on seasonality of ocean primary production,” Biogeosciences 10 (6), 4357–4369 (2013).

    Article  Google Scholar 

  45. H. J. Hirche, K. N. Kosobokova, B. Gaye-Haake, et al., “Structure and function of contemporary food webs on Arctic shelves: a panarctic comparison. The pelagic system of the Kara Sea—communities and components of carbon flow,” Progr. Oceanogr. 71 (2–4), 288–313 (2006).

    Article  Google Scholar 

  46. V. J. Hill, P. A. Matrai, E. Olson, et al., “Synthesis of integrated primary production in the Arctic Ocean: II. In situ and remotely sensed estimates,” Progr. Oceanogr. 110, 107–125 (2013).

    Article  Google Scholar 

  47. Remote Sensing of Ocean Color in Coastal and Other Optical-Complex Waters, Ed. by S. Sathyendranath (International Ocean-Color Coordinating Group, Dartmouth, 2000).

  48. Ocean Color Remote Sensing in Polar Seas, Ed. by M. Babin (International Ocean-Colour Coordinating Group, Dartmouth, 2015).

  49. T. Juul-Pedersen, K. E. Arendt, J. Mortensen, et al., “Seasonal and interannual phytoplankton production in a sub-Arctic tidewater outlet glacier fjord, SW Greenland,” Mar. Ecol.: Progr. Ser. 524, 27–38 (2015).

    Article  Google Scholar 

  50. Z. A. Kuzyk, R. W. Macdonald, M. A. Granskog, et al., “Sea ice, hydrological and biological processes in the Churchill River estuary region, Hudson Bay,” Estuarine, Coastal Shelf Sci. 77 (3), 369–384 (2008).

    Article  Google Scholar 

  51. V. Le Fouest, M. Babin, and J.-É. Trembley, “The fate of riverine nutrients on Arctic shelves,” Biogeosciences 10 (6), 3661–3677 (2013).

    Article  Google Scholar 

  52. Y. J. Lee, P. A. Matrai, M. A. M. Friedrichs, et al., “An assessment of phytoplankton primary productivity in the Arctic Ocean from satellite ocean color/in situ chlorophyll a based models,” J. Geophys. Res. 120, (2015). doi 10.1002/2015/JC11018

  53. A. Longhurst, “Seasonal cycles of pelagic production and consumption,” Progr. Oceanogr. 36 (2), 77–167 (1995).

    Article  Google Scholar 

  54. A. Longhurst, S. Sathyendranath, T. Platt, and C. Caverhill, “An estimate of global primary production in the ocean from satellite radiometer data,” J. Plankton Res. 17 (6), 1245–1271 (1995).

    Article  Google Scholar 

  55. M. J. Lutz, K. Caldeira, R. B. Dunbar, and M. Behrenfeld, “Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean,” J. Geophys. Res. 112, C10011 (2007). doi 10.1029/ 2006JC003706

    Article  Google Scholar 

  56. R. W. Macdonald, “Arctic estuaries and ice: a positivenegative estuarine couple,” in The Freshwater Budget of the Arctic Ocean, Ed. by E. L. Lewis (Kluwer, Dordrecht, 2000), pp. 383–407.

    Chapter  Google Scholar 

  57. P. R. Makarevich, N. V. Druzhkov, V. V. Larionov, and E. I. Druzhkova, “The freshwater phytoplankton biomass and its role in the formation of a highly productive zone on the Ob-Yenisei shallows (southern Kara Sea),” in Siberian River Run-Off in the Kara Sea, Ed. by R. Stein, (Elsevier, Amsterdam, 2003), pp. 185–193.

    Google Scholar 

  58. J. W. McClelland, R. M. Holmes, K. H. Dunton, and R. W. Macdonald, “The Arctic Ocean estuary,” Estuaries Coasts 35, 353–368 (2012).

    Article  Google Scholar 

  59. E.-M. Nöthig, Y. Okolodkov, V. V. Larionov, and P. R. Makarevich, “Phytoplankton distribution in the inner Kara Sea: a comparison of three summer investigations,” in Siberian River Run-Off in the Kara Sea, Ed. by R. Stein, (Elsevier, Amsterdam, 2003), pp. 163–183.

    Google Scholar 

  60. A. Nummelin, M. Ilicak, C. Li, and L. H. Smedsrud, “Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover,” J. Geophys. Res.: Oceans 121, 617–637 (2016).

    Article  Google Scholar 

  61. S. Opsahl, R. Benner, and R. W. Amon, “Major flux of terrigenous dissolved organic matter through the Arctic Ocean,” Limnol. Ocenogr. 44 (8), 2017–2023 (1999).

    Article  Google Scholar 

  62. C. L. Osburn, L. Retamal, and W. F. Vincent, “Photoreactivity of chromophoric dissolved organic matter transported by the Mackenzie River to the Beaufort Sea,” Mar. Chem. 115 (1–2), 10–20 (2009).

    Article  Google Scholar 

  63. B. J. Peterson, R. M. Holmes, J. W. McClelland, et al., “Increasing river discharge to the Arctic Ocean,” Science 298, 2171–2173 (2002).

    Article  Google Scholar 

  64. S. Pivovarov, R. Schlitzer, and A. Novikhin, “River run-off influence on the water mass formation in the Kara Sea,” in Siberian River Run-Off in the Kara Sea, Ed. by R. Stein, (Elsevier, Amsterdam, 2003), pp. 9–25.

    Google Scholar 

  65. M. Perrette, A. Yool, G. D. Quartly, and E. E. Popova, “Near-ubiquity of ice-edge blooms in the Arctic,” Biogeosciences 8 (2), 515–524 (2011).

    Article  Google Scholar 

  66. R. W. Reynolds, T. M. Smith, C. Liu, et al., “Daily high-resolution-blended analyses for sea surface temperature,” J. Clim. 20 (22), 5473–5496 (2007).

    Article  Google Scholar 

  67. S. Rysgaard, T. G. Nielsen, and B. W. Hansen, “Seasonal variation in nutrients, pelagic primary production and grazing in a high-Arctic coastal marine ecosystem, Young Sound, Northeast Greenland,” Mar. Ecol.: Progr. Ser. 179, 13–25 (1999).

    Article  Google Scholar 

  68. R. Stein, “Circum Arctic river discharge and its geological record,” Int. J. Earth Sci. 89, 447–449 (2000).

    Article  Google Scholar 

  69. C. W. Sullivan, K. R. Arrigo, C. R. McClain, et al., “Distribution of phytoplankton blooms in the Southern Ocean,” Science 262, 1832–1837 (1993).

    Article  Google Scholar 

  70. S. V. Sheberstov and E. A. Lukyanova, “A system for acquisition, processing, and storage of satellite and field biooptical data,” Proceedings of IV International Conf. “Current Problems in Optics of Natural Waters” (Nizhny Novgorod, 2007), pp. 179–183.

    Google Scholar 

  71. H. L. Sørensen, L. Meire, T. Juul-Pedersen, et al., “Seasonal carbon cycling in a Greenland fjord: an integrated pelagic and benthic study,” Mar. Ecol.: Progr. Ser. 539, 1–17 (2015).

    Article  Google Scholar 

  72. E. Sakshaug, “Primary and secondary production in the Arctic Seas,” in The Organic Carbon Cycle in the Arctic Ocean, Ed. by R. Stein and R. W. Macdonald (Springer-Verlag, Berlin, 2004), pp. 57–81.

    Chapter  Google Scholar 

  73. E. Sakshaug and D. Slagstad, “Light and productivity of phytoplankton in polar marine ecosystems—a physiological view,” Polar Res. 10, 69–85 (1991).

    Article  Google Scholar 

  74. J. Simstich, V. Stanovoy, A. Novikhin, et al., “Stable isotope ratios in bivalve shells: Suitable recorders for salinity and nutrient variability in the Kara Sea,” in Siberian River Run-Off in the Kara Sea, Ed. by R. Stein, (Amsterdam, Elsevier, 2003), 111–123.

    Google Scholar 

  75. H. U. Sverdrup, “On conditions for the vernal blooming of phytoplankton,” J. Cons. Perm. Int. Explor. Mer. 18, 287–295 (1953).

    Article  Google Scholar 

  76. S. J. Thackeray, I. D. Jones, and S. C. Maberly, “Longterm change in the phenology of spring phytoplankton: species-specific responses to nutrient enrichment and climatic change,” J. Ecol. 96 (3), 523–535 (2008).

    Article  Google Scholar 

  77. J.-É. Tremblay, C. Michel, K. A. Hobson, et al., “Bloom dynamics in early-opening water of the Arctic Ocean,” Limnol. Oceanogr. 51, 900–912 (2006).

    Article  Google Scholar 

  78. T. Westberry, M. J. Behrenfeld, D. A. Siegel, and E. Boss, “Carbon-based primary productivity modeling with vertically resolved photoacclimation,” Global Biogeochem. Cycles 22, GB2024 (2008). doi 10.1029/ 2007GB003078

    Article  Google Scholar 

  79. M. Winder and J. E. Cloern, “The annual cycles of phytoplankton biomass,” Philos. Trans. R. Soc. B 365, 3215–3226 (2010).

    Article  Google Scholar 

  80. J. A. Yoder and M. A. Kennelly, “What have we learned about ocean variability from ocean color imagers?” Oceanography 19 (1), 152–171 (2006).

    Article  Google Scholar 

  81. L. A. Zenkevitch, Biology of the Seas of the USSR (Academy of Sciences of Soviet Union, Moscow, 1963; George Allen and Unwin, London, 1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Demidov.

Additional information

Original Russian Text © A.B. Demidov, S.V. Sheberstov, V.I. Gagarin, P.V. Khlebopashev, 2017, published in Okeanologiya, 2017, Vol. 57, No. 1, pp. 103–117.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demidov, A.B., Sheberstov, S.V., Gagarin, V.I. et al. Seasonal variation of the satellite-derived phytoplankton primary production in the Kara Sea. Oceanology 57, 91–104 (2017). https://doi.org/10.1134/S0001437017010027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437017010027

Navigation