Skip to main content
Log in

Finite-Dimensional Reduction of Systems of Nonlinear Diffusion Equations

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We present a class of one-dimensional systems of nonlinear parabolic equations for which the phase dynamics at large time can be described by an ODE with a Lipschitz vector field in \(\mathbb R^n\). In the considered case of the Dirichlet boundary value problem, the sufficient conditions for a finite-dimensional reduction turn out to be much wider than the known conditions of this kind for a periodic situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Vol. 840 in Lect. Notes Math. (Springer, Berlin, 1981).

    Book  Google Scholar 

  2. A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, in Stud. Math. Appl. (North-Holland, Amsterdam, 1992), Vol. 25.

    Book  MATH  Google Scholar 

  3. R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, in Appl. Math. Sci. (Springer, New York, 1997), Vol. 68.

    MATH  Google Scholar 

  4. J. C. Robinson, Infinite-Dimensional Dynamical Systems (Cambridge, Cambridge Univ. Press, 2001).

    Book  Google Scholar 

  5. A. V. Romanov, “Finite-dimensional limit dynamics of dissipative parabolic equations,” Sb. Math. 191 (3), 415–429 (2000).

    Article  MathSciNet  Google Scholar 

  6. S. Zelik, “Inertial manifolds and finite-dimensional reduction for dissipative PDEs,” Proc. Roy. Soc. Edinburgh. Ser. A 144 (6), 1245–1327 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Kostianko and S. Zelik, “Inertial manifolds for 1D reaction-diffusion-advection systems. I. Dirichlet and Neumann boundary conditions,” Comm. Pure Appl. Anal. 16 (6), 2357–2376 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. V. Romanov, “A parabolic equation with nonlocal diffusion without smooth inertial manifold,” Math. Notes 96 (4), 548–555 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Anikushin, “Frequency theorem for parabolic equations and its relation to inertial manifolds theory,” J. Math. Anal. Appl. 505 (1), Paper No. 125454 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. V. Romanov, “Final dynamics of systems of nonlinear parabolic equations on the circle,” AIMS Math. 6 (12), 13407–13422 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Kostianko and S. Zelik, “Inertial manifolds for 1D reaction-diffusion-advection systems. II. Periodic boundary conditions,” Comm. Pure Appl. Anal. 17 (1), 285–317 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. V. Romanov, “Finite-dimensional dynamics on attractors of non-linear parabolic equations,” Izv. Math. 65 (5), 977–1001 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Triebel, Theory of Function Spaces (Birkhauser, Basel–Boston–Stuttgart, 1986).

    MATH  Google Scholar 

  14. D. A. Kamaev, “Families of stable manifolds of invariant sets of systems of parabolic equations,” Russian Math. Surv. 47 (5), 185–186 (1992).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Romanov.

Additional information

Translated from Matematicheskie Zametki, 2023, Vol. 113, pp. 265–272 https://doi.org/10.4213/mzm13616.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanov, A.V. Finite-Dimensional Reduction of Systems of Nonlinear Diffusion Equations. Math Notes 113, 267–273 (2023). https://doi.org/10.1134/S0001434623010297

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434623010297

Keywords

Navigation