Skip to main content
Log in

Space Experiment to Measure Ionospheric Radio Signal Delays

  • PHYSICAL PRINCIPLES OF EARTH STUDIES FROM SPACE
  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This paper describes a space experiment that is planned to be performed within the framework of the Russian project of the microsatellite CHIBIS AI to meaure ionospheric signal delays to determine the electron density and spatial fluctuations of the ionospheric and magnetospheric plasma. The measurements will be conducted by the phase interferometer method at two levels using signals from the onboard in-phase transmitters and GPS/GLONASS signals. The location of the radiation sources at two levels will make it possible to separate plasma variations in the ionosphere and inner magnetosphere–plasmasphere. The experimental results are of interest both for solving fundamental problems of near-Earth plasma physics and applied problems to improve positioning accuracy using global navigation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Balan, N., Otsuka, Y., Tsugawa, T., Miyazak, S., Ogawa, T., and Shiokawa, K., Plasmaspheric electron content in the GPS ray paths over Japan under magnetically quiet conditions at high solar activity, Earth Planets Space, 2002, vol. 54, pp. 71–79. doi 10.1186/BF03352423

    Article  Google Scholar 

  2. Beidou navigation satellite system signal in space. Interface control document. Open service signal (version 2.0). China satellite navigation office. December 2013. http://www.beidou.gov.cn/attach/2013/12/26/2013122 6b8a6182fa73a4ab3a5f107f762283712.pdf.

  3. Belehaki, A., Jakowski, N., and Reinisch, B.W., Plasmaspheric electron content derived from GPS TEC and digisonde ionograms, Adv. Space Res., 2004, vol. 33, no. 6, pp. 833–837. doi 10.1016/j.asr.2003.07.008

    Article  Google Scholar 

  4. Bondur, V.G. and Smirnov, V.M., Method for monitoring seismically hazardous territories by ionospheric variations recorded by satellite navigation systems, Dokl. Earth Sci., 2005a, vol. 403, no. 5, pp. 736–740.

    Google Scholar 

  5. Bondur, V.G. and Smirnov, V.M., Monitoring of ionosphere variations during the preparation and realization of earthquakes using satellite navigation system data, in Proceedings of the 31st International Symposium on Remote Sensing of Environment (ISRSE), 2005b, pp. 372–375.

  6. Bryunelli, B.E. and Namgaladze, A.A., Fizika ionosfery (Ionospheric Physics), Moscow: Nauka, 1988.

  7. Cherniak, Iu.V., Zakharenkova, I.E., Krankowski, A., and Shagimuratov, I.I., Plasmaspheric electron content derived from GPS TEC and FORMOSAT-3/COSMIC measurements: Solar minimum condition, Adv. Space Res., 2012, vol. 50, pp. 427–440.

    Article  Google Scholar 

  8. Chernyshov, A.A., Chugunin, D.V., Mogilevsky, M.M., Moiseenko, I. L., Ilyasov, A.A., Vovchenko, V.V., Pulinets, S.A., Klimenko, M.V., Zakharenkova, I.E., Kostrov, A.V., Gushchin, M.E., and Korobkov, S.V., Approaches to studying the multiscale ionospheric structure using nanosatellites, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 1, pp. 72–79. doi 10.7868/ S0016794016010041

  9. Chernyshov, A.A., Ilyasov, A.A., Mogilevsky, M.M., Golovchanskaya, I.V., and Kozelov, B.V., Influence of inhomogeneities of the plasma density and electric field on the generation of electrostatic noise in the auroral zone, Plasma Phys. Rep., 2015, vol. 41, no. 3, pp. 254–261. doi 10.7868/S0367292115030014

    Article  Google Scholar 

  10. European GNSS (Galileo) open service Signal–in–space interface control document. European Union 2016, Document subject to terms of use and disclaimers p. i–ii, OS SIS ICD, Issue 1.3, December 2016. https:// www.gsc-europa.eu/system/files/galileo_documents/ Galileo-OS-SIS-ICD.pdf.

  11. Gershman, B.N., Erukhimov, A.M., and Yashin, Yu.Ya., Volnovye yavleniya v ionosfere i kosmicheskoi plazme (Wave Phenomena in the Ionosphere and Space Plasma), Moscow: Nauka, 1984.

  12. Global positioning systems directorate. Systems engineering and integration. Interface specification. IS–GPS–200. 5th September 2012. http://www.gps.gov/technical/icwg//IS-GPS-200G.pdf.

  13. Global’naya navigatsionnaya sputnikovaya sistema GLONASS. Interfeisnyi kontrol’nyi dokument. Navigatsionnyi radiosignal v diapazonakh L1, L2 (redaktsiya 5.1) (Global Navigation Satellite System GLONASS. Interface Control Document. Navigation Radio Signal in L1 and L2 Ranges (Edition 5.1)), Moscow, 2008. http://www.aggf. ru/gnss/glon/ikd51ru.pdf.

  14. Khabituev, D.S. and Shpynev, B.G., Variations in O+/N+ transition height over East Siberia from Irkutsk incoherent scatter data and GPS total electron content, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2014, vol. 11, no. 1, pp. 107–117.

    Google Scholar 

  15. Klimenko, M.V., Klimenko, V.V., Bessarab, F.S., Ratovsky, K.G., Zakharenkova, I.E., Nosikov, I. A., Stepanov, A.E., Kotova, D.S., Vorobjev, V.G., and Yagodkina, O.I., Influence of geomagnetic storms of September 26–30, 2011, on the ionosphere and HF radiowave propagation. I. Ionospheric effects, Geomagn. Aeron. (Engl. Transl.), 2015a, vol. 55, no. 6, pp. 744–762.

  16. Klimenko, M.V., Klimenko, V.V., Zakharenkova, I.E., and Cherniak, Iu.V., The global morphology of the plasmaspheric electron content during Northern winter 2009 based on GPS/COSMIC observation and GSM TIP model results, Adv. Space Res., 2015b, vol. 55, no. 8, pp. 2077–2085. doi 10.1016/j.asr.2014.06.027

    Article  Google Scholar 

  17. Krinberg, I.A. and Tashchilin, A.V., Ionosfera i plazmosfera (The Ionosphere and Plasmosphere), Moscow: Nauka, 1984.

  18. Lee, H.B., Jee, G., Kim, Y.H., and Shim, J.S., Characteristics of global plasmaspheric TEC in comparison with the ionosphere simultaneously observed by Jason-1 satellite, J. Geophys. Res., 2013, vol. 118, pp. 935–946. doi 10.1002/jgra.50130

    Article  Google Scholar 

  19. Lemaire, J.F. and Gringauz, K.I., The Earth’s Plasmasphere, Cambridge: Cambridge Univ. Press, 1998.

    Book  Google Scholar 

  20. Lunt, N., Kersley, L., and Bailey, G.J., The influence of the protonosphere on GPS observations: Model simulation, Radio. Sci., 1999, vol. 34, no. 3, pp. 725–732. doi 10.1029/1999RS900002

    Article  Google Scholar 

  21. Manju, G., Ravindran, S., Devasia, C.V., Thampi, S.V., and Sridharan, R., Plasmaspheric electron content (PEC) over low latitude regions around the magnetic equator in the Indian sector during different geophysical conditions, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, pp. 1066–1073.

    Article  Google Scholar 

  22. Mosert, M., Gende, M., Brunini, C., and Altadill, D., Comparisons of IRI TEC predictions with GPS and digisonde measurements at Ebro, Adv. Space Res., 2007, vol. 39, pp. 841–847.

    Article  Google Scholar 

  23. Noveishie issledovaniya rasprostraneniya radiovoln vdol' zemnoi poverkhnosti (Recent Studies of Radiowave Propagation Along the Earth’s Surface), Mandel’shtam, L.I. and Papaleksi, N.D., Eds., Moscow–Leningrad, 1945.

  24. Novikov, L.S., Osnovy ekologii okolozemnogo kosmicheskogo prostranstva (Fundamentals of Ecology of the Near-Earth Space), Moscow: Universitetskaya Kniga, 2006.

  25. Petrukovich, A.A., Mogilevsky, M.M., Chernyshov, A.A., and Shklyar, D.R., Some aspects of magnetosphere–ionosphere relations, Phys.-Usp., 2015, vol. 58, no. 6, pp. 606–611. doi 10.3367/UFNe.0185.201506i.0649

    Article  Google Scholar 

  26. Quasi-zenith satellite system navigation service interface specification for QZSS (IS-QZSS). V1.5, Japan Aerospace Exploration Agency. March 27, 2013. http://qz-vision. jaxa.jp/USE/is-qzss/DOCS/IS-QZSS_15_E.pdf.

  27. Singh, A.K., Singh, R.P., and Siingh, D., State studies of Earth’s plasmasphere: A review, Planet. Space Sci., 2011, vol. 59, no. 9, pp. 810–834.

    Article  Google Scholar 

  28. Yeh, K.C. and Liu, C.H., Radio wave scintillations in the ionosphere, Proc. IEEE, 1982, vol. 70, no. 4, pp. 24–64.

    Google Scholar 

  29. Yizengaw, E., Moldwin, M.B., Galvan, D., Iijima, B.A., Komjathy, A., and Mannucci, A.J., Global plasmaspheric TEC and its relative contribution to GPS TEC, J. Atmos. Sol.-Terr. Phys., 2008, vol. 70, pp. 1541–1548. doi 10.1016/j.jastp.2008.04.022

    Article  Google Scholar 

  30. Zolotov, O.V., Earthquake effects in ionospheric TEC variations, Cand. Sci. (Phys.–Math.) Dissertation, St. Petersburg: St. Petersburg State University, 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Chernyshov.

Additional information

Translated by O. Pismenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosov, A.S., Chernyshov, A.A., Mogilevsky, M.M. et al. Space Experiment to Measure Ionospheric Radio Signal Delays. Izv. Atmos. Ocean. Phys. 54, 1282–1290 (2018). https://doi.org/10.1134/S0001433818090499

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433818090499

Keywords:

Navigation