Skip to main content
Log in

Aerosol composition and microstructure in the smoky atmosphere of Moscow during the August 2010 extreme wildfires

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This is a comprehensive study of the physicochemical characterization of multicomponent aerosols in the smoky atmosphere of Moscow during the extreme wildfires of August 2010 and against the background atmosphere of August 2011. Thermal–optical analysis, liquid and ion chromatography, IR spectroscopy, and electron microscopy were used to determine the organic content (OC) and elemental content (EC) of carbon, organic/inorganic and ionic compounds, and biomass burning markers (anhydrosaccharides and the potassium ion) and study the morphology and elemental composition of individual particles. It has been shown that the fires are characterized by an increased OC/EC ratio and high concentrations of ammonium, potassium, and sulfate ions in correlation with an increased content of levoglucosan as a marker of biomass burning. The organic compounds containing carbonyl groups point to the process of photochemical aging and the formation of secondary organic aerosols in the urban atmosphere when aerosols are emitted from forest fires. A cluster analysis of individual particles has indicated that when the smokiest atmosphere is characterized by prevailing soot/tar ball particles, which are smoke-emission micromarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ito and J. Penner, “Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870–2000,” Global Biogeochem. Cycles 19 (2), GB2028 (2005). doi 10.1029/2004GB002374

    Article  Google Scholar 

  2. V. Ramanathan and G. Carmichael, “Global and regional climate changes due to black carbon,” Nature Geosci. 1, 221–227 (2008).

    Article  Google Scholar 

  3. O. B. Popovicheva, “Combustion-derived carbonaceous aerosols (soot) in the atmosphere: Water interaction and climate effects,” in Aerosols: Science and Technology, Ed. by I. Agranovski (Wiley, Weinheim, 2010), Chap.5.

    Google Scholar 

  4. Y. Yun, J. E. Penner, and O. Popovicheva, “The effects of hygroscopicity on ice nucleation of fossil fuel combustion aerosols in mixed-phase clouds,” Atmos. Chem. Phys. 13 (8), 4339–4348 (2013).

    Article  Google Scholar 

  5. U.S. EPA Report to congress on black carbon, EPA-450/D-12-001, Environmental Protection Agency, Washington, D.C., 2012.

  6. J. Reid, R. Koppmann, T. Eck, and D. P. Eleuterio, “A review of biomass burning emissions. Part 2: Intensive physical properties of biomass burning particles,” Atmos. Chem. Phys. 5 (3), 799–825 (2005).

    Article  Google Scholar 

  7. M. Posfai, R. Simonics, J. Li, et al., “Individual aerosol particles from biomass burning in southern Africa: 1. Comparisons and size distributions of carbonaceous particles,” J. Geophys. Res. 108 (D13) (2003). doi 10.1029/2002JD002291.20

    Google Scholar 

  8. J. L. Hand, W. C. Malm, A. Laskin, et al., “Optical, physical, and chemical properties of tar balls observed during the Yosemite aerosols characterization study,” J. Geophys. Res. 110, D21210 (2005). doi 10.1029/2004JD005728

    Article  Google Scholar 

  9. Y. N. Samsonov, K. P. Koutsenogii, V. I. Makarov, et al., “Particulate emissions from fires in central Siberian Scots pine forests,” Can. J. For. Res. 35, 2207–2217 (2005).

    Article  Google Scholar 

  10. G. Engling, P. Herchers, S. Kreidenweis, et al., “Composition of the fine organic aerosol in Yosemite National Park during the 2002 Yosemite Aerosol Characterization Study,” Atmos. Environ. 40 (16), 2959–2972 (2006).

    Article  Google Scholar 

  11. H. Puxbaum, A. Caseiro, A. Sánchez-Ochoa, et al., “Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background,” J. Geophys. Res. 112, D23S05 (2007). doi 10.1029/2006JD008114

    Article  Google Scholar 

  12. K. E. Yttri, C. Dye, and G. Kiss, “Ambient aerosol concentrations of sugars and sugar-alcohols at four different sites in Norway,” Atmos. Chem. Phys. 7, 4267–4279 (2007).

    Article  Google Scholar 

  13. M. Radzi Bin Abas, N. A. Rahman, N. Omar, et al., “Organic composition of aerosol particulate matter during a haze episode in Kuala Lumpur, Malaysia,” Atmos. Environ. 38 (25), 4223–4241 (2004).

    Article  Google Scholar 

  14. Y. Cheng, G. Engling, K.-B. He, et al., “Biomass burning contribution to Beijing aerosol,” Atmos. Chem. Phys. 13 (15), 7765–7781 (2013).

    Article  Google Scholar 

  15. A. Vicente, C. Alves, A. I. Calvo, et al., “Emission factors and detailed chemical composition of smoke particles from the 2010 wildfire season,” Atmos. Environ. 71, 295–303 (2013).

    Article  Google Scholar 

  16. V. G. Bondur, “Urgency and necessity of aerospace monitoring of wildfires in Russia,” Vestn. Otd. Nauk Zemle Ross. Akad. Nauk 2, NZ11001 (2010).

    Google Scholar 

  17. Yu. N. Samsonov, S. A. Popova, O. A. Belenko, and O. V. Chankina, “Chemical composition and disperse characteristics of aerosol smoke emission from fires in boreal Siberian forests,” Opt. Atmos. Okeana 21 (6), 523–531 (2008).

    Google Scholar 

  18. S. A. Popova and V. I. Makarov, “Chemical composition of smoldering combustion products of pine tree (Pinus sylvestris) and siberian larch (Larix sibirica) wood, marsh tea (Ledum palustre) and lichen (Cladonia sp.),” Opt. Atmos. Okeana 24 (6), 488–492 (2011).

    Google Scholar 

  19. S. Kuokka, K. Teinilä, M. Saarnio, et al., “Using a moving measurement platform for determining the chemical composition of atmospheric aerosols between Moscow and Vladivostok,” Atmos. Chem. Phys. 7 (18), 4793–4805 (2007).

    Article  Google Scholar 

  20. V. S. Kozlov, M. V. Panchenko, and E. P. Yausheva, “Mass fraction of black carbon in submicron aerosol as an indicator of influence of smokes from remote forest fires in Siberia,” Atmos. Environ. 42 (11), 2611–2620 (2008).

    Article  Google Scholar 

  21. E. M. Fischer and C. Schär, “Future changes in daily summer temperature variability driving processes and role for temperature extremes,” Clim. Dyn. 33 (7), 917–935 (2009).

    Article  Google Scholar 

  22. G. I. Gorchakov, P. P. Anikin, A. A. Volokh, et al., “Studies of the smoky atmosphere composition over Moscow during peatbog fires in the summer–fall season of 2002,” Izv., Atmos. Ocean. Phys. 40 (3), 323–336 (2004).

    Google Scholar 

  23. N. E. Chubarova, E. V. Gorbarenko, E. I. Nezval’, and O. A. Shilovtseva, “Aerosol and radiation characteristics of the atmosphere during forest and peat fires in 1972, 2002, and 2010 in the region of Moscow,” Izv., Atmos. Ocean. Phys 47 (6), 729–738 (2011).

    Article  Google Scholar 

  24. D. Barriopedro, E. M. Fischer, J. Luterbacher, et al., “The hot summer of 2010: Redrawing the temperature record map of Europe,” Science 332, 220 (2011). doi 10.1126/science.1201224

  25. A. N. Safronov, E. V. Fokeeva, V. S. Rakitin, et al., “Severe wildfires near Moscow, Russia in 2010: Modeling of carbon monoxide pollution and comparisons with observations,” Remote Sens. 7 (1), 395–429 (2015).

    Article  Google Scholar 

  26. L. Mei, Y. Xue, G. de Leeuw, et al., “Integration of remote sensing data and surface observations to estimate the impact of the Russian wildfires over Europe and Asia during August 2010,” Biogeosciences 8, 3771–3791 (2011).

    Article  Google Scholar 

  27. I. B. Konovalov, M. Beekmann, I. N. Kuznetsova, et al., “Atmospheric impacts of the 2010 Russian wildfires: Integrating modelling and measurements of an extreme air pollution episode in the Moscow region,” Atmos. Chem. Phys. 11 (19), 10036–10051 (2011).

    Article  Google Scholar 

  28. G. I. Gorchakov, M. A. Sviridenkov, E. G. Semutnikova, et al., “Optical and microphysical parameters of the aerosol in the smoky atmosphere of the Moscow region in 2010,” Dokl. Earth Sci. 437 (2), 513–517 (2011).

    Article  Google Scholar 

  29. G. I. Gorchakov, E. G. Semutnikova, A. A. Isakov, et al., “Moscow smoky haze of 2010. Extreme aerosol and gaseous air pollution in Moscow region,” Opt. Atmos. Okean 24 (6), 452–458 (2011).

    Google Scholar 

  30. I. P. Parshutkina, E. V. Sosnikova, N. P. Grishina, et al., “Atmospheric aerosol characterization in 2010 anomalous summer season in the Moscow region,” Russ. Meteorol. Hydrol. 36 (6), 355–361 (2011).

    Article  Google Scholar 

  31. A. D. A. Hansen, H. Rosen, and T. Novakov, “The aethalometer—an Instrument for real-time measurement of optical absorption by aerosol particles,” Sci. Total Environ. 36, 191–196 (1984).

    Article  Google Scholar 

  32. M. E. Birch and R. A. Cary, “Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust,” Aerosol Sci. Technol. 25 (3), 221–241 (1996).

    Article  Google Scholar 

  33. J. Coates, “Interpretation of infrared spectra, a practical approach,” in Encyclopedia of Analytic Chemistry, Ed. by R. A. Meyers (Wiley, Chichester, 2000), pp. 10815–10837.

    Google Scholar 

  34. O. Popovicheva, E. Kireeva, N. Persiantseva, et al., “Microscopic characterization of individual particles from multicomponent ship exhaust,” J. Environ. Monitor. 14, 3101–3110 (2012).

    Article  Google Scholar 

  35. D. Jaffe, W. Hafner, D. Chand, et al., “Interannual variations in PM2.5 due to wildfires in the western United States,” Environ. Sci. Technol. 42, 2812–2818 (2008).

    Article  Google Scholar 

  36. O. Popovicheva, M. Kistler, E. Kireeva, et al., “Physicochemical characterization of smoke aerosol during large-scale wildfires: Extreme event of August 2010 in Moscow,” Atmos. Environ. 96, 405–414 (2014).

    Article  Google Scholar 

  37. C. A. Alves, C. Gonçalves, C. A. Pio, et al., “Smoke emissions from biomass burning in a Mediterranean shrubland,” Atmos. Environ. 44 (25), 3024–3033 (2010).

    Article  Google Scholar 

  38. D. Baumgardner, O. Popovicheva, J. Allan, et al., “Soot reference materials for instrument calibration and intercomparisons: A workshop summary with recommendations,” Atmos. Meas. Tech. 5, 1869–1887 (2012).

    Article  Google Scholar 

  39. J. McDonald, B. Zielinska, E. Fujita, et al., “Fine particle and gaseous emission rates from residential wood combustion,” Environ. Sci. Technol. 34, 2080–2091 (2000).

    Article  Google Scholar 

  40. S. Agarwal, S. G. Aggarwal, K. Okuzawa, and K. Kawamura, “Size distributions of dicarboxylic acids, ketoacids, a-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: Implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols,” Atmos. Chem. Phys. 10 (13), 5839–5858 (2010).

    Article  Google Scholar 

  41. O. B. Popovicheva, E. D. Kireeva, N. K. Shonija, and T. D. Khokhlova, “Water interaction with laboratorysimulated fossil fuel combustion particles,” J. Phys. Chem. A 113, 10503–10511 (2009).

    Article  Google Scholar 

  42. O. B. Popovicheva, N. M. Persiantseva, E. D. Kireeva, et al., “Quantification of the hygroscopic effect of soot aging in the atmosphere: Laboratory simulations,” J. Phys. Chem. 115, 298–306 (2011).

    Article  Google Scholar 

  43. M. P. Fraser and K. Lakshmanan, “Using levoglucosan as a molecular marker for the long-range transport of biomass combustion aerosols,” Environ. Sci. Technol. 34 (21), 4560–4564 (2000).

    Article  Google Scholar 

  44. C. Schmidl, I. Marr, A. Caseiro, et al., “Chemical characterization of fine particle emissions from woodstove combustion of common woods growing in mid-European Alpine regions,” Atmos. Environ. 42, 126–141 (2008).

    Article  Google Scholar 

  45. H. Bauer, M. Claeys, R. Vermeylen, et al., “Arabitol and mannitol as tracers for the quantification of airborne fungal spore,” Atmos. Environ. 42 (3), 588–593 (2008).

    Article  Google Scholar 

  46. J. S. Reid, P. V. Hobbs, R. J. Ferek, et al., “Physical, chemical and optical properties of regional hazes dominated by smoke in Brazil,” J. Geophys. Res. 103, 32059–32080 (1998).

    Article  Google Scholar 

  47. K. S. Johnson, B. Zuberi, L. T. Mollina, et al., “Processing of soot in an urban environment case study from the Mexico City Metropolitan Area,” Atmos. Chem. Phys. 5, 3033–3043 (2005).

    Article  Google Scholar 

  48. M. O. Andreae, “Soot carbon and excess fine potassium: Long-range transport of combustion-derived aerosols,” Science 220, 1148–1151 (1983).

    Article  Google Scholar 

  49. O. B. Popovicheva, E. D. Kireeva, S. Steiner, et al., “Microstructure and chemical composition of diesel and biodiesel particle exhaust,” Aerosol Air Qual. Res. 14, 1392–1401 (2014).

    Google Scholar 

  50. M. Ikegami, K. Okada, Y. Zaizen, et al., “Very high weight ratios of S/K in individual haze particles over Kalimantan during the 1997 Indonesian forest fires,” Atmos. Environ. 35 (25), 4237–4243 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Kireeva.

Additional information

Original Russian Text © O.B. Popovicheva, M. Kistler, E.D. Kireeva, N.M. Persiantseva, M.A. Timofeev, N.K. Shoniya, V.M. Kopeikin, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2017, Vol. 53, No. 1, pp. 56–65.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popovicheva, O.B., Kistler, M., Kireeva, E.D. et al. Aerosol composition and microstructure in the smoky atmosphere of Moscow during the August 2010 extreme wildfires. Izv. Atmos. Ocean. Phys. 53, 49–57 (2017). https://doi.org/10.1134/S0001433817010091

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433817010091

Keywords

Navigation