Skip to main content
Log in

Comparative analysis of the North Atlantic surface circulation reproduced by three different methods

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Calculation results are presented for long-term mean annual surface currents in the North Atlantic based on direct drifter measurements and numerical experiments with the ocean general circulation model using both climatic arrays of hydrological data World Ocean Atlas 2009 and Argo profiling data. The calculations show that the technique suggested for model calculations of oceanographic characteristics of the World Ocean with the use of Argo data significantly improves the climatic fields of the temperature and salinity even on a coarse grid. The comparison of the model calculation results with drifter data showed that the temperature and salinity fields found from Argo data with the use of data variational interpolation on a regular grid allow the calculation of realistic currents and can be successfully used as initial conditions in hydrodynamic models of the ocean dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Lumpkin and M. Pazos, “Measuring surface currents with Surface Velocity Program drifters: The instrument, its data and some recent results,” in Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics, Ed. by A. Griffa, (Cambridge Univ. Press, Cambridge, 2007), pp. 39–67.

    Chapter  Google Scholar 

  2. O. P. Nikitin, S. Y. Kasyanov, and G. V. Muzyka, “World ocean surface currents visualization software,” in Proceedings of the 3rd International Workshop on Computer Science and Information Technologies CSIT'2001 (Ufa, 2001), Vol. 2, pp. 32–41.

    Google Scholar 

  3. O. P. Nikitin, S. Yu. Kasyanov, and G. V. Muzyka, “The computer information-reference system ‘Surface Currents of the World Ocean’,” Proc. State Oceanogr. Inst., issue 209, 75–89 (2005) [in Russian].

    Google Scholar 

  4. O. P. Nikitin, “Storage, processing and visualization data system of drifter observations of surface currents in the World Ocean,” Russ. J. Earth. Sci. 12 (5), ES5002 (2012). doi 10.2205/2012ES000521

    Article  Google Scholar 

  5. K. V. Lebedev, H. Yoshinari, N. A. Maximenko, and P. W. Hacker, “YoMaHa'07: Velocity data assessed from trajectories of Argo floats at parking level and at the sea surface,” IPRC Tech. Note No. 4 (2) (2007).

    Google Scholar 

  6. Y. N. Sasaki, N. Schneider, N. Maximenko, and K. Lebedev, “Observational evidence for propagation of decadal spiciness anomalies in the North Pacific,” Geophys. Res. Lett. 37, L07708 (2010). doi 10.1029/ 2010GL042716

    Article  Google Scholar 

  7. R. A. Locarnini, A. V. Mishonov, J. I. Antonov, et al., World Ocean Atlas 2009, Vol. 1: Temperature, NOAA Atlas NESDIS 68, Ed. by S. Levitus (U. S. Government Printing Office, Washington, D.C., 2010).

  8. J. I. Antonov, D. Seidov, T. P. Boyer, et al., World Ocean Atlas 2009, Vol. 2: Salinity, NOAA Atlas NESDIS 69, Ed. by S. Levitus (U. S. Government Printing Office, Washington, D.C., 2010).

  9. E. I. Baranov, The Structure and Dynamics of Gulfstream Waters (Gidrometeoizdat, Moscow, 1988) [in Russian].

    Google Scholar 

  10. E. I. Baranov, A. V. Kolinko, and V. S. Regentovskii, “The hydrological structure and thermodynamics of waters of the Newfoundland energy-active zone,” in Large-Scale Ocean–Atmosphere Interaction and Formation of Hydrophysical Fields, Ed. by S. S. Lappo (Gidrometeoizdat, Moscow, 1989), pp. 102–108. [in Russian].

    Google Scholar 

  11. G. Reverdin, P. P. Niiler, and H. Valdimarsson, “North Atlantic Ocean surface currents,” J. Geophys. Res. 108 (C1), 3002 (2003). doi 10.1029/2001JC001020

    Article  Google Scholar 

  12. R. D. Smith, M. E. Maltrud, F. O. Bryan, and M. W. Hecht, “Numerical simulation of the North Atlantic Ocean at 1/10°,” J. Phys. Oceanogr. 30, 1532–1561 (2000).

    Article  Google Scholar 

  13. A. S. Sarkisyan and Yu. L. Demin, “A semidiagnostic method of sea currents calculation,” in Large-Scale Oceanographic Experiments in the WCRP (Tokyo, 1983), 2 (1), 201–214.

    Google Scholar 

  14. A. S. Sarkisyan, “On some problems and results of ocean modeling,” Oceanology (Engl. Transl.) 36 (5), 607–617 (1996).

    Google Scholar 

  15. Yu. L. Demin and R. A. Ibraev, Numerical model of calculation of currents and sea surface height in multiply connected domains of the ocean, Preprint No. 183 (Department of Numerical Mathematics, USSR Acad. Sci., Moscow, 1988) [in Russian].

    Google Scholar 

  16. R. A. Ibraev, “Reconstruction of climatic characteristics of Gulfstream Current,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 29 (6), 803–814 (1993).

    Google Scholar 

  17. K. G. Grigor’yan, Yu. A. Ivanov, K. V. Lebedev, and A. S. Sarkisyan, “Average annual climate of the ocean. Part 1: World Ocean circulation,” Izv., Atmos. Ocean. Phys. 34 (4), 417–428 (1998).

    Google Scholar 

  18. A. S. Sarkisyan, Numerical Analysis and Prediction of Sea Currents (Gidrometeoizdat, Leningrad, 1977) [in Russian].

    Google Scholar 

  19. R. D. Smith, J. K. Dukowicz, and R. C. Malone, “Parallel ocean general circulation modeling,” Phys. D 60, 38–61 (1992).

    Article  Google Scholar 

  20. J. K. Dukowicz, R. D. Smith, and R. C. Malone, “A reformulation and implementation of the Bryan–Cox–Semtner ocean model on the connection machine,” J. Atmos. Ocean. Technol. 10, 195–208 (1993).

    Article  Google Scholar 

  21. Yu. L. Demin, Yu. A. Ivanov, K. V. Lebedev, and I. G. Usychenko, “Testing of numerical model of ocean dynamics based on the results of Megapoligon-87 experiment,” in Megapoligon Experiment (Nauka, Moscow, 1992), pp. 319–330 [in Russian].

    Google Scholar 

  22. M. G. Bulushev and A. S. Sarkisyan, “Energetics at the initial stage of the adjustment of equatorial currents,” Izv., Atmos. Ocean. Phys. 32 (5), 552–563 (1996).

    Google Scholar 

  23. Yu. A. Ivanov, K. V. Lebedev, and A. S. Sarkisyan, “Generalized hydrodynamic adjustment method (GHDAM),” Izv., Atmos. Ocean. Phys. 33 (6), 752–757 (1997).

    Google Scholar 

  24. K. V. Lebedev, “Average annual climate of the ocean. Part 2: Integral characteristics of the world ocean climate (mass, heat, and salt transports),” Izv., Atmos. Ocean. Phys. 35 (1), 87–96 (1999).

    Google Scholar 

  25. Yu. A. Ivanov and K. V. Lebedev, “Interseasonal variability of the world ocean climate,” Izv., Atmos. Ocean. Phys. 36 (1), 119–130 (2000).

    Google Scholar 

  26. Yu. A. Ivanov and K. V. Lebedev, “Integral average monthly characteristics of the world ocean climate,” Izv., Atmos. Ocean. Phys. 36 (2), 244–252 (2000).

    Google Scholar 

  27. K. V. Lebedev and M. I. Yaremchuk, “A diagnostic study of the Indonesian Throughflow,” J. Geophys. Res. 105 (C5), 11243–11258 (2000).

    Article  Google Scholar 

  28. A. S. Sarkisyan, Modeling of Ocean Dynamics (Gidrometeoizdat, St. Petersburg, 1991) [in Russian].

    Google Scholar 

  29. D. P. Dee, S. M. Uppala, A. J. Simmons, et al., “The ERA-Interim reanalysis: Configuration and performance of the data assimilation system,” Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  30. K. V. Lebedev, “An Argo-based model for investigation of the global ocean (AMIGO),” Oceanology (Engl. Transl.) 56 (2), 172–181 (2016).

    Google Scholar 

  31. K. V. Lebedev, S. DeCarlo, P. W. Hacker, et al., “Argo products at the Asia-Pacific Data-Research Center,” Eos Trans. AGU 91 (26), Abstract IT25A–01 (2010).

    Google Scholar 

  32. M. O. Kurnosova and K. V. Lebedev, “Study of transport variations in the Kuroshio extension system at 35°N, 147°E based on the data of Argo floats and satellite altimetry,” Dokl. Earth Sci. 458 (1), 1154–1157 (2014).

    Article  Google Scholar 

  33. F. O. Bryan, M. W. Hecht, and R. D. Smith, “Resolution convergence and sensitivity studies with North Atlantic circulation models. Part 1: The western boundary current system,” Ocean Modell. 16 (3–4), 141–159 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Lebedev.

Additional information

Original Russian Text © K.V. Lebedev, A.S. Sarkisyan, O.P. Nikitin, 2016, published in Izvestiya Rossiiskoi Akademii Nauk, Fizika Atmosfery i Okeana, 2016, Vol. 52, No. 4, pp. 465–474.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, K.V., Sarkisyan, A.S. & Nikitin, O.P. Comparative analysis of the North Atlantic surface circulation reproduced by three different methods. Izv. Atmos. Ocean. Phys. 52, 410–417 (2016). https://doi.org/10.1134/S0001433816040083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433816040083

Keywords

Navigation