Skip to main content
Log in

Radiation and temperature effects of the intensive injection of dust aerosol into the atmosphere

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Based on the measurements at the AERONET station (Ilorin, Nigeria), quantitative estimates of radiation and temperature effects of dust aerosol during the intensive sand storm in the Sahara Desert from January 28 to February 6, 2000, are obtained. The model used in calculations implies particles of dust aerosol being no more than 15 μm in radius (according to the data from AERONET station); another model takes into account large particles (LPs) up to 60 μm in radius and involves a spectral variation in the OPAC refraction index. In the short infrared region, the optical thickness of aerosol weakening increases with LPs taken into account in the aerosol model; the albedo of aerosol single scattering reduces in comparison to the respective optical parameters of the first model. Dust aerosol cools the earth’s surface. In the presence of LPs in dust aerosol, the surface-atmosphere system can both cool and warm, while if LPs less than 15 μm in size are not taken into account, the surface cools. The rate of cooling of the 10-m near-surface atmospheric layer ΔTt changes in the interval of −(4–21)°C/day without the influence of LPs over 15 μm in size on solar radiation transfer taken into account; if this influence is taken into account, the rate is −(6–36)°C/day. In the long infrared region, the surface-atmosphere system warms more intensively if LPs are taken into account by the aerosol model. The heating rate of the 10-m near-surface atmospheric layer does not exceed ~0.5°C/day during the entire period of dust emission without LPs taken into account (AERONET algorithm); if LPs are taken into account (modeling results), heating rate reaches a maximal value of ~0.6°C/day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements,” J. Geophys. Res. 105 (16), 20673–20696 (2000).

    Article  Google Scholar 

  2. G. A. D’Almeida, “On the variability of desert aerosol radiative characteristics,” J. Geophys. Res. 92 (D3), 3017–3026 (1987).

    Article  Google Scholar 

  3. L. Gomes, G. Bergameni, G. Coude-Gaussen, and P. Rognon, “Submicron desert dusts: A sandblasting process,” J. Geophys. Res. 95 (11), 13927–13935 (1999).

    Google Scholar 

  4. M. Schulz, Y. Balkanski, W. Guelle, and F. Dulac, “Role of aerosol size distribution and source location in three-dimensional simulation of a Saharan dust episode tested against satellite-derived optical thickness,” J. Geophys. Res. 103 (9), 10579–10592 (1998).

    Article  Google Scholar 

  5. S. Otto, M. de Reus, T. Trautmann, A. Thomas, M. Wendisch, and S. Borrmann, “Atmospheric radiative effects of an in situ measured Saharan dust plume and the role of large particles,” Atmos. Chem. Phys. 7, 4887–4903 (2007).

    Article  Google Scholar 

  6. S. Nickovic, G. Kallos, and A. Popadopoulos, “A model for prediction of desert dust in the atmosphere,” J. Geophys. Res. 106 (D16), 18113–18129 (2001).

    Article  Google Scholar 

  7. I. Tegen and I. Fung, “Modeling of mineral dust in the atmosphere: Sources, transport and optical thickness,” J. Geophys. Res. 99 (D23), 22987–22914 (1994).

    Google Scholar 

  8. O. E. García, A. M. Díaz, F. J. Expósito, J. P. Díaz, O. Dubovik, P. Dubuisson, J. C. Roger, T. F. Eck, A. Sinyuk, Y. Derimian, E. G. Dutton, J. S. Schafer, B. N. Holben, and C. A. García, “Validation of AERO-NET estimates of atmospheric solar fluxes and aerosol radiative forcing by ground-based broadband measurements,” J. Geophys. Res. 113, D21207 (2008). doi 10.1029/2008JD010211

    Article  Google Scholar 

  9. A. N. Rublev, I. A. Gorchakova, and T. A. Udalova, “The effect that coarse particles have on estimates of both optical and radiation characteristics of dust aerosol,” Izv., Atmos. Ocean. Phys. 47 (2), 190–200 (2011).

    Article  Google Scholar 

  10. R. T. Pinker, G. Pandithurai, B. N. Holben, O. Dubovik, and T. O. Aro, “A dust outbreak episode in sub-Sahel west Africa,” J. Geophys. Res. 106 (19), 22923–22930 (2001).

    Article  Google Scholar 

  11. I. N. Sokolik and G. S. Golitsyn, “Study of optical and radiative characteristics of dust aerosol,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 28 (8), 787–796 (1992).

    Google Scholar 

  12. I. A. Gorchakova, “Parametrization of integral fluxes of solar radiation,” Izv., Atmos. Ocean. Phys. 36 (3), 343–352 (2000).

    Google Scholar 

  13. I. A. Gorchakova, I. I. Mokhov, T. A. Tarasova, et al., “Effect of clouds on radiative transfer in the atmosphere from the data of the 1999 winter Zvenigorod experiment,” Izv., Atmos. Ocean. Phys. 37 (Suppl. 1), 134–141 (2001).

    Google Scholar 

  14. E. M. Feigelson, B. A. Fomin, I. A. Gorchakova, E. V. Rozanov, Yu. M. Timofeyev, A. N. Trotsenko, and M. D. Schwarzkopf, “Calculation of longwave radiation fluxes in atmospheres,” J. Geophys. Res. 96 (D5), 8985–9001 (1991).

    Article  Google Scholar 

  15. R. G. Ellingson and Y. Fouquart, “The intercomparison of radiation codes used in climate models: An overview,” J. Geophys. Res. 96 (D8), 8929–8953 (1991).

    Article  Google Scholar 

  16. I. A. Gorchakova, T. A. Tarasova, M. A. Sviridenkov, P. P. Anikin, and E. V. Romashova, “Modeling radiative forcing by background aerosol on the basis of measurement data,” Izv., Atmos. Ocean. Phys. 45 (4), 467–477 (2009).

    Article  Google Scholar 

  17. I. A. Gorchakova, I. I. Mokhov, and A. N. Rublev, “Effect of aerosol on the clear-sky radiation regime as derived from Zvenigorod aerosol–cloud–radiation experiments,” Izv., Atmos. Ocean. Phys. 41 (4), 448–460 (2005).

    Google Scholar 

  18. A Preliminary Cloudless Standard Atmosphere for Radiation Computation. Rep. WCP-112 (WMO/TD-24, Genewa, 1986).

  19. A. N. Rublev, N. E. Chubarova, A. N. Trotsenko, and G. I. Gorchakov, “Determination of NO2 Column amounts from AERONET data,” Izv., Atmos. Ocean. Phys. 40 (1), 54–67 (2004).

    Google Scholar 

  20. A. Smirnov, B. N. Holben, O. Dubovik, et al., “Atmospheric aerosol optical properties in Persian Gulf,” J. Atmos. Sci. 59 (3), 620–634 (2002).

    Article  Google Scholar 

  21. M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79 (5), 831–844 (1998).

    Article  Google Scholar 

  22. I. A. Gorchakova, “Calculation of heat radiation fluxes with aerosol,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 21 (4), 434–438 (1985).

    Google Scholar 

  23. I. N. Sokolik, O. B. Toon, and R. W. Bergstrom, “Modeling the radiative characteristics of airborne mineral aerosols at infrared wavelengths,” J. Geophys. Res. 103 (D8), 8813–8826 (1998).

    Article  Google Scholar 

  24. Y. Fouquart, J. Buriez, M. Herman, and R. Kandel, “The influence of clouds on radiation: A climate-modeling perspective,” Rev. Geophys. 28, 145–166 (1990).

    Article  Google Scholar 

  25. J. L. Dufresne, C. Gautier, P. Ricchiazzi, and Y. Fouguart, “Longwave scattering effects of mineral aerosols,” J. Atmos. Sci. 59, 1959–1966 (2002).

    Article  Google Scholar 

  26. K.-N. Liou and T. Sasamori, “On the transfer of solar radiation in aerosol atmospheres,” J. Atmos. Sci. 32 (11), 2166–2177 (1975).

    Article  Google Scholar 

  27. I. I. Mokhov and I. A. Gorchakova, “Radiation and temperature effects of summer fires in 2002 in the Moscow Region,” Dokl. Earth Sci. 400 (1), 160–163 (2005).

    Google Scholar 

  28. I. A. Gorchakova and I. I. Mokhov, “The radiative and thermal effects of smoke aerosol over the region of Moscow during the summer fires of 2010,” Izv., Atmos. Ocean. Phys. 48 (5), 496–503 (2012).

    Article  Google Scholar 

  29. Study of Aerosol Radiation Characteristics in the Asiatic Part of Russia Ed. by S. M. Sakerin (IOA SO RAN, Tomsk, 2012) [in Russian].

  30. I. I. Mokhov and M. G. Akperov, “Tropospheric lapse rate and its relation to surface temperature from reanalysis data,” Izv., Atmos. Ocean. Phys. 42 (4), 430–438 (2006).

    Article  Google Scholar 

  31. J. Hansen, M. Sato, and R. Ruedy, “Radiative forcing and climate response,” J. Geophys. Res. 102 (D6), 6831–6864 (1997).

    Article  Google Scholar 

  32. L. A. Remer, Y. J. Kaufman, B. N. Holben, A. M. Thompson, and D. McNamara, “Biomass burning aerosol size distribution and modeled optical properties,” J. Geophys. Res. 103 (D24), 31879–31892 (1998).

    Article  Google Scholar 

  33. O. Dubovik, B. Holden, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide location,” J. Atmos. Sci. 59, 590–608 (2002).

    Article  Google Scholar 

  34. G. Myhre, A. Grini, J. M. Haywood, F. Stordal, B. Chatenet, D. Tanre, J. K. Sundet, I. S. A. Isaksen, “Modeling the radiative impact of mineral dust during the Saharan dust experiment (SHADE) campaign,” J. Geophys. Res. 108 (D18), 8579 (2003). doi 10.1029/2002JD002566

    Article  Google Scholar 

  35. I. Tegen, A. A. Lacis, and I. Fung, “The influence on climate forcing of mineral aerosols from disturbed soils,” Nature 380, 419–422 (1996).

    Article  Google Scholar 

  36. E. J. Highwood, J. M. Haywood, M. D. Silverstone, S. M. Newman, and J. P. Taylor, “Radiative properties and direct effect of Saharan dust measured by the C-130 aircraft during Saharan Dust Experiment (SHADE): 2. Terrestrial spectrum,” J. Geophys. Res. 108 (D18), 8578 (2003). doi 10.1029/2002JD002551

    Article  Google Scholar 

  37. L. Gömez-Amo, M. P. Utrillas, and J. A. Martïnez-Lozano, “Determination of direct aerosol radiative effects in the shortwave and longwave spectral ranges during desert dust events over Valencia (Spain),” AIP Conf. Proc. 1531, 696–699 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Mokhov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorchakova, I.A., Mokhov, I.I. & Rublev, A.N. Radiation and temperature effects of the intensive injection of dust aerosol into the atmosphere. Izv. Atmos. Ocean. Phys. 51, 113–126 (2015). https://doi.org/10.1134/S0001433815010053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433815010053

Keywords

Navigation