Skip to main content
Log in

Errors in the retrieval of oceanic concentrations of optically active materials from multispectral sensor signals by observations through atmospheric layer

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

This paper presents an algorithm for retrieving the oceanic concentrations of optically active materials (OAMs)—phytoplankton, particulate matter, and dissolved organics—from signals of a multispectral sensor placed at an arbitrary height above the sea surface. The algorithm takes into account sensor noises (both photon (shot) and dark current). The joint distribution of the upwelling radiance and OAM spectra required for the algorithm is constructed using optical models of water and the oceanic atmosphere. A method based on correlations between inherent optical properties is proposed to improve the retrieval accuracy. The calculations showed that this method significantly increases the accuracy of OAM retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, et al., “Ocean Color Chlorophyll Algorithms for SeaWiFS,” J. Geophys. Res. 103(C11), 24937–24953 (1998).

    Article  Google Scholar 

  2. S. Sathyendranath, L. Prieur, and A. Morel, “A Three-Component Model of Ocean Colour and Its Application to Remote Sensing of Phytoplankton Pigments in Coastal Waters,” Int. J. Remote Sens. 10(8), 1373–1394 (1989).

    Article  Google Scholar 

  3. Z. Lee and K. L. Carder, “Effect of Spectral Band Numbers on the Retrieval of Water Column and Bottom Properties from Ocean Color Data,” Appl. Opt. 41(12), 2191–2201 (2002).

    Article  Google Scholar 

  4. I. M. Levin, E. I. Levina, G. D. Gil’bert, et al., “Optimal Algorithm for Remote Determination of Optically Active Substances in the Ocean with a Multichannel Spectrometer,” Izv., Atmos. Ocean. Phys. 41(5), 632–640 (2005).

    Google Scholar 

  5. I. M. Levin and E. I. Levina, “Effect of Atmospheric Interference and Sensor Noise in Retrieval of Optically Active Materials in the Ocean by Hyperspectral Remote Sensing,” Appl. Opt. 46(28), 6896–6906 (2007).

    Article  Google Scholar 

  6. V. P. Kozlov, “Problems of Experiment Design with Scope in a Functional Space,” in Mathematical Theory of Experiment Design, Ed. by S. M. Ermakov (Nauka, St. Petersburg, 1983) [in Russian].

    Google Scholar 

  7. V. P. Kozlov, I. M. Levin, and I. V. Zolotukhin, “Optimum Selection of Spectral Channels in the Problem of Remote Sensing of Phytoplankton Concentration in Ocean Water,” in Proceedings of Pacific Ocean Remote Sensing Conference (PORSEC-92), Okinava, Japan, 1992 (Okinava, 1992), pp. 1073–1075.

  8. I. V. Zolotukhin and I. M. Levin, “Optimum Experiment Planning for Remote Determination of the Content of Optically Active Substances in the Ocean,” Dokl. Earth Sci. 355(5), 749–751 (1997).

    Google Scholar 

  9. I. V. Zolotukhin and I. M. Levin, “Application of the Theory of Optimal Experimental Design to Remote Sensing of Phytoplankton and Other Optically Active Substances in the Ocean,” Izv., Atmos. Ocean. Phys. 35(5), 616–624 (1999).

    Google Scholar 

  10. Yu.-A. R. Mullamaa, Atlas of Optical Properties of Sea Surface Waves (Est. Acad. Sci., Tartu, 1964) [in Russian].

    Google Scholar 

  11. I. M. Levin, “On the Coefficient of Sea Radiance: Use of Molecular Scattering,” Okeanologiya 37(2), 192–194 (1997).

    Google Scholar 

  12. L. Prieur and S. Sathyendranath, “An Optical Classification of Coastal and Oceanic Waters based on the Specific Spectral Absorption Curves of Phytoplankton Pigments, Dissolved Organic Matter, and Other Particulate Materials,” Limnol. Oceanogr. 26(4), 671–689 (1981).

    Article  Google Scholar 

  13. A. Morel and S. Maritorena, “Bio-Optical Properties of Oceanic Waters: A Reappraisal,” J. Geophys. Res. 106(C4), 7163–7180 (2001).

    Article  Google Scholar 

  14. A. Morel, “Are the Empirical Relationships Describing the Bio-Optical Properties of Case 1 Waters Consistent and Internally Compatible?,” J. Geophys. Res. 114, C01016 (2009). doi 10.1029/2008JC004803

    Article  Google Scholar 

  15. R. W. Gould, R. A. Arnone, and P. M. Martinolich, “Spectral Dependence of the Scattering Coefficient in Case 1 and Case 2 Waters,” Appl. Opt. 38(12), 2377–2383 (1999).

    Article  Google Scholar 

  16. A. Morel, D. Antoine, and B. Gentili, “Biderectional Reflectance of Oceanic Waters: Accounting for Raman Emission and Varying Particle Scattering Phase Function,” Appl. Opt. 41(30), 6289–6306 (2002).

    Article  Google Scholar 

  17. A. Bricaud, M. Babin, A. Morel, et al., “Variability in the Chlorophyll-Specific Absorption Coefficients of Natural Phytoplankton: Analysis and Parameterization,” J. Geophys. Res. 100(C7), 13321–13332 (1995).

    Article  Google Scholar 

  18. O. V. Kopelevich, “The Current Low-Parametric Models of Seawater Optical Properties,” in Proceedings of International Conference “Current Problems in Optics of Natural Waters” (ONW’2001), St. Petersburg, Russia, 2001 (D.S. Rozhdestvensky Optical Society, St.Petersburg, 2001), pp. 18–23.

    Google Scholar 

  19. R. M. Pope and E. S. Fry, “Absorption Spectrum (380–700 nm) of Pure Water. II. Integrating Cavity Measurements,” Appl. Opt. 36(33), 8710–8723 (1997).

    Article  Google Scholar 

  20. V. V. Sobolev, Radiant Energy Transfer in Stellar and Planetary Atmospheres (Gostekhizdat, Moscow, 1956) [in Russian].

    Google Scholar 

  21. H. R. Gordon and D. J. Castano, “Aerosol Analysis with the Coastal Zone Color Scanner: A Simple Method for Including Multiple Scattering Effects,” Appl. Opt. 28(7), 1320–1326 (1989).

    Article  Google Scholar 

  22. K. S. Shifrin and I. K. Minin, “On the Nonhorizontal Theory of Visibility,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova 68, 5–75 (1957).

    Google Scholar 

  23. W. W. Gregg and K. L. Carder, “A Simple Spectral Solar Irradiance Model for Cloudless Maritime Atmospheres,” Limnol. Oceanogr. 35(8), 1657–1675 (1990).

    Article  Google Scholar 

  24. K. S. Shifrin, “Optical Properties of the Atmosphere over Oceans,” in Light Scattering and Absorption in Natural and Artificial Disperse Environments (Inst. Phys., Minsk, 1991), pp. 277–288 [in Russian].

    Google Scholar 

  25. O. I. Koblents-Mishke and V. I. Vedernikov, “Primary Product,” in Oceanology. Ocean Biology, Ed. by M. V. Vinogradov (Nauka, Moscow, 1977), Vol. 2, pp. 183–208 [in Russian].

    Google Scholar 

  26. Ocean Optics, Ed. by A. S. Monin (Nauka, Moscow, 1983), Vols. 1–2 [in Russian].

    Google Scholar 

  27. I. M. Levin and O. V. Kopelevich, “Correlations between Inherent Optical Properties in the Near-550 nm Spectral Range,” Okeanologiya 47(3), 344–348 (2008).

    Google Scholar 

  28. I. M. Levin and T. M. Radomyslskaya, “Estimate of Water Inherent Optical Properties from Secchi Depth,” Izv., Atmos. Ocean. Phys. 48(2), 214–221 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Levin.

Additional information

Original Russian Text © I.M. Levin, E.I. Levina, 2012, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2012, Vol. 48, No. 5, pp. 608–616.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levin, I.M., Levina, E.I. Errors in the retrieval of oceanic concentrations of optically active materials from multispectral sensor signals by observations through atmospheric layer. Izv. Atmos. Ocean. Phys. 48, 544–551 (2012). https://doi.org/10.1134/S0001433812050064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433812050064

Keywords

Navigation