Skip to main content
Log in

Simulation of the impact of thunderstorm activity on atmospheric gas composition

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

A chemistry-climate model of the lower and middle atmosphere has been used to estimate the sensitivity of the atmospheric gas composition to the rate of thunderstorm production of nitrogen oxides at upper tropospheric and lower stratospheric altitudes. The impact that nitrogen oxides produced by lightning have on the atmospheric gas composition is treated as a subgrid-scale process and included in the model parametrically. The natural uncertainty in the global production rate of nitrogen oxides in lightning flashes was specified within limits from 2 to 20 Tg N/year. Results of the model experiments have shown that, due to the variability of thunderstorm-produced nitrogen oxides, their concentration in the upper troposphere and lower stratosphere can vary by a factor of 2 or 3, which, given the influence of nitrogen oxides on ozone and other gases, creates the potential for a strong perturbation of the atmospheric gas composition and thermal regime. Model calculations have shown the strong sensitivity of ozone and the OH hydroxyl to the amount of lightning nitrogen oxides at different atmospheric altitudes. These calculations demonstrate the importance of nitrogen oxides of thunderstorm origin for the balance of atmospheric odd ozone and gases linked to it, such as ozone and hydroxyl radicals. Our results demonstrate that one important task is to raise the accuracy of estimates of the rate of nitrogen oxide production by lightning discharges and to use physical parametrizations that take into account the local lightning effects and feedbacks arising in this case rather than climatological data in models of the gas composition and general circulation of the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Jacob, Introduction to Atmospheric Chemistry (University Press, Princeton, 1999).

    Google Scholar 

  2. G. Bras’e and S. Solomon, Aeronomy of the Middle Atmosphere (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  3. G. P. Brasseur, J. J. Orlando, and G. S. Tyndal, Atmospheric Chemistry and Global Change (University Press, Oxford, 1999).

    Google Scholar 

  4. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics. From Air Pollution to Climate Change (Wiley, New York, 1998).

    Google Scholar 

  5. IPCC (Intergovernmental Panel on Climate Change), Climate Change 2001: The Scientific Basis: Third Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by J. T. Houghton, Y. Ding, D. J. Griggs, et al. (Cambridge University Press, Cambridge, 2001).

    Google Scholar 

  6. E. L. Aleksandrov, Yu. A. Izrael’, I. L. Karol’, et al., Ozone Shield of the Earth and Its Changes (Gidrometeoizdat, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  7. P. O. Wennberg, T. F. Hanisco, L. Jaegle, et al., Hydrogen Radicals, Nitrogen Radicals, and the Production of Ozone in the Upper Troposphere, Science 279(1), 49–53 (1998).

    Article  Google Scholar 

  8. J. F. Noxon, “Atmospheric Nitrogen Fixation by Lightning,” Geophys. Rev. Lett. 3(8), 463–465 (1976).

    Article  Google Scholar 

  9. M. K. W. Ko, M. B. McElroy, D. K. Weisenstein, et al., “Lightning: A Possible Source of Stratospheric Odd Nitrogen,” J. Geophys. Res. 91(D5), 5395–5404 (1986).

    Article  Google Scholar 

  10. A. J. DeCaria, K. E. Pickering, G. L. Stenchikov, et al., “A Cloud-Scale Model Study of Lightning-Generated NOx in an Individual Thunderstorm during STERAO-A,” J. Geophys. Res. 105(D9), 11601–11616 (2000).

    Article  Google Scholar 

  11. C. Price and D. Rind, “A Simple Lightning Parameterization for Calculating Global Lightning Distributions,” J. Geophys. Res. 97(D9), 9919–9933 (1992).

    Google Scholar 

  12. A. J. DeCaria, K. E. Pickering, G. L. Stenchikov, et al., “Lightning-Generated NOx and Its Impact on Tropospheric Ozone Production: A Three-Dimensional Modeling Study of a Stratosphere-Troposphere Experiment: Radiation, Aerosols and Ozone (STERAO-A) Thunderstorm,” J. Geophys. Res. 110(D14), D14303 (2005).

    Article  Google Scholar 

  13. C. Price, J. Penner, and M. Prather, “NOx from Lightning. 2. Constraints from the Global Atmospheric Electric Circuit,” J. Geophys. Res. 102(D5), 5943–5951 (1997).

    Article  Google Scholar 

  14. A. S. Elokhov and A. N. Gruzdev, “Nitrogen Dioxide Column Content and Vertical Profile Measurements at the Zvenigorod Research Station,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 36(6), 831–846 (2000) [Izv., Atmos. Ocean. Phys. 36 (6), 763–777 (2000) ].

    Google Scholar 

  15. A. S. Elokhov and A. N. Gruzdev, “Estimation of Tropospheric and Stratospheric NO2 from Spectrometric Measurements of Column NO2 Abundances,” Proc. SPIE-Int. Soc. Opt. Eng. 2506, 444–454 (1995).

    Google Scholar 

  16. V. Eyring, N. R. P. Harris, M. Rex, et al., “A Strategy for Process-Oriented Validation of Coupled Chemistry-Climate Models,” Bull. Am. Meteorol. Soc. 86, 1117–1133 (2005).

    Article  Google Scholar 

  17. S. P. Smyshlyaev, M. A. Geller, and V. A. Yudin, “Sensitivity of Model Assessments of High-Speed Civil Transport Effects on Stratospheric Ozone Resulting from Uncertainties in the NOx Production from Lightning,” J. Geophys. Res. 104(D21), 26401–26417 (1998).

    Article  Google Scholar 

  18. O. A. Sovde, M. Gauss, S. P. Smyshlyaev, et al., “Evaluation of the Chemical Transport Model” (CTM2 with Focus on Arctic Ozone Depletion), J. Geophys. Res. 113(D9), D09304, doi: 10.1029/2007JD009240 (2008).

    Article  Google Scholar 

  19. A. DeCaria, K. E. Pickering, G. L. Stenchikov, et al., “Lightning-Generated NOx and Its Impact on Tropospheric Ozone Production: A Three-Dimensional Modeling Study of a Stratosphere-Troposphere Experiment: Radiation, Aerosols and Ozone (STERAO-A) Thunderstorm,” J. Geophys. Res. 110(D14), D14303, doi: 10.1029/2004JD005556 (2005).

    Article  Google Scholar 

  20. U. Schumann and H. Huntrieser, “The Global Lightning-Induced Nitrogen Oxides Source,” Atmos. Chem. Phys. 7(14), 3823–3907 (2007).

    Article  Google Scholar 

  21. W. L. Chameides, D. H. Stedman, R. R. Dickerson, et al., “NOx Production in Lightning,” J. Atmos. Sci. 34(1), 143–149 (1977).

    Article  Google Scholar 

  22. R. D. Hill, R. D. Rinker, and Dale Wilson H., “Atmospheric Nitrogen Fixation by Lightning,” J. Atmos. Sci. 37(1), 179–192 (1980).

    Article  Google Scholar 

  23. M. N. Bhetanabhotla, B. A. Crowell, A. Coucouvinos, et al., “Simulation of Trace Species Production by Lightning and Corona Discharge in Moist Air,” Atmos. Environ. 19(9), 1391–1397 (1985).

    Article  Google Scholar 

  24. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vols. 1 and 2 (2nd ed., Nauka, Moscow, 1966; Academic Press, New York, 1966, 1967).

    Google Scholar 

  25. M. S. Stark, J. T. H. Harrison, and C. Anastasi, “Formation of Nitrogen Oxides by Electrical Discharges and Implications for Atmospheric Lightning,” J. Geophys. Res. 101(D3), 6963–6970 (1996).

    Article  Google Scholar 

  26. W. J. Borucki and W. L. Chameides, “Lightning: Estimates of the Rates of Energy Dissipation and Nitrogen Fixation,” Rev. Geophys. Space Phys. 22(4), 363–372 (1984).

    Article  Google Scholar 

  27. M. G. Lawrence, W. L. Chameides, P. S. Kasibhatla, et al., Handbook of Atmospheric Electrodynamics, Ed. by H. Volland (CRC, Boca Raton, FL, 1995), pp. 189–202.

    Google Scholar 

  28. V. A. Rakov and M. A. Uman, Lightning-Physics and Effects (Cambridge Univ. Press, Cambridge, 2003).

    Google Scholar 

  29. M. Rahman, V. Cooray, V. A. Rakov, et al., “Measurements of NOx Produced by Rocket-Triggered Lightning,” Geophys. Rev. Lett. 34(3), L03816, doi: 10.1029/2006GL027956 (2007).

    Article  Google Scholar 

  30. Sprites, Elves, and Intense Lightning Discharges, Ed. by M. Fullekrug, E. Mareev, and M. Rycroft, NATO Science Series, Vol. 225 (Springer, New York, 2006).

    Google Scholar 

  31. E. Mishin, “Ozone Layer Perturbation by a Single Blue Jet,” Geophys. Rev. Lett. 24(15), 1919–1922 (1997).

    Article  Google Scholar 

  32. H. J. Christian, R. J. Blakeslee, D. J. Boccippio, et al., “Global Frequency and Distribution of Lightning as Observed from Space by the Optical Transient Detector,” J. Geophys. Res. 108(D1), 4005, doi: 10.1029/2002JD002347 (2003).

    Article  Google Scholar 

  33. K. Pickering, E. Y. Wang, W. K. Tao, et al., “Vertical Distribution of Lightning NOx for Use in Regional and Global Chemical Transport Models,” J. Geophys. Res. 103(D23) 31203–31216 (1998).

    Article  Google Scholar 

  34. B. Vonnegut, “Some Facts and Speculations Concerning the Origin and Role of Thunderstorm Electricity in Severe Local Storms, Meteorol. Monogr.,” V. 5. (27) / Eds: Atlas D., Booker D.R., Byers H. et al., Boston: Am. Meteor. Soc., 1963. P. 224–241.

    Google Scholar 

  35. E. R. Williams, “Lightning and Climate: A Review,” Atmos. Res. 76(1), 272–287 (2005).

    Article  Google Scholar 

  36. E. J. Zipser, D. J. Cecil, C. Liu, et al., “Where Are the Most Intense Thunderstorms on Earth?,” Bull. AMS 87, 1057–1071 (2006).

    Google Scholar 

  37. D. J. Allen and K. E. Pickering, “Evaluation of Lightning Flash Rate Parameterizations for Use in a Global Chemical Transport Model,” J. Geophys. Res. 107(D23), 4711, doi: 10.1029/2002JD002066 (2002).

    Article  Google Scholar 

  38. F. Flatøy and O. Hov, “NOx from Lightning and the Calculated Chemical Composition of the Free Troposphere,” J. Geophys. Res. 102(D17), 21373–21381 (1997).

    Article  Google Scholar 

  39. V. Ya. Galin, S. P. Smyshlyaev, and E. M. Volodin, “Combined Chemistry-Climate Model of the Atmosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 43(4), 437–452 (2007) [Izv., Atmos. Ocean. Phys. 43 (4), 399–412 (2007) ].

    Google Scholar 

  40. S. P. Smyshlyaev, V. L. Dvortsov, M. A. Geller, et al., “A Two Dimensional Model with Input Parameters from a GCM: Ozone Sensitivity to Different Formulation for the Longitudinal Temperature Variation,” J. Geophys. Res. 103, 28373–28387 (1998).

    Article  Google Scholar 

  41. V. A. Alekseev, E. M. Volodin, V. Ya. Galin, et al., “Simulation of Modern Climate using the Atmospheric Model of IVM RAN,” Preprint No. 2086-A98, IVM RAN (1998).

  42. A. Frei, J. A. Miller, and D. A. Robinson, “Improved Simulations of Snow Extent in the Second Phase of the Atmospheric Model Intercomparison Project (AMIP-2),” J. Geophys. Res. 108(D12), 4369 (2003).

    Article  Google Scholar 

  43. Scientific Assessment of Ozone Depletion: 2006. WMO, Global Ozone Research and Monitoring Project. Report no. 47 (Switzerland, Genewa, 2005).

  44. L. W. Thomason, L. R. Poole, and T. Deshler, “A Global Climatology of Stratospheric Aerosol Surface Area Density Deduced from Stratospheric Aerosol and Gas Experiment II Measurements: 1984–1994,” J. Geophys. Res. 102(D7), 8967–8976 (1997).

    Article  Google Scholar 

  45. G. J. Rottman, “Variations of Solar Ultraviolet Irradiance Observed by the UARS SOLSTICE-1991 to 1999,” Space Sci. Rev. 94(1), 83–91 (2000).

    Article  Google Scholar 

  46. W. B. DeMore, S. P. Sander, D. M. Golden, et al., “Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling,” JPL Publ., Nos. 05-4 (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Smyshlyaev.

Additional information

Original Russian Text © S.P. Smyshlyaev, E.A. Mareev, V.Ya. Galin, 2010, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2010, Vol. 46, No. 4, pp. 487–504.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smyshlyaev, S.P., Mareev, E.A. & Galin, V.Y. Simulation of the impact of thunderstorm activity on atmospheric gas composition. Izv. Atmos. Ocean. Phys. 46, 451–467 (2010). https://doi.org/10.1134/S0001433810040043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433810040043

Key words

Navigation