Skip to main content
Log in

Air dynamics near the soil surface and convective emission of aerosol

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

Asymptotics for the mass concentration of finely dispersed aerosol are obtained on the basis of in situ measurements in a desert in the Caspian region and estimates of hydrodynamic parameters in the viscous thermal boundary layer near the soil surface. In the problem under consideration, the dynamic velocity (friction speed) and the temperature drop in the thermal boundary layer are external parameters. The model of a porous soil layer, in which the air dynamics is described with the use of the Darcy equation, is considered a possible mechanism of aerosol export. The estimates of the critical parameters at which sand particles thermally roll over in soil pores are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Barenblatt and G. S. Golitsyn, “Local Structure of Mature Dust Storms,” J. Atmos. Sci. 31(7), 1917–1933 (1974).

    Article  Google Scholar 

  2. M. Yu. Yablokov and A. V. Andronova, “A Model of Takeoff Processes of Desert Sand Aerosols in Windless Conditions,” J. Aerosol Sci. 28(Suppl. 1), 563–564 (1997).

    Article  Google Scholar 

  3. G. S. Golitsyn, Introduction to the Dynamics of Planetary Atmospheres (Gidrometeoizdat, Leningrad, 1973) [in Russian].

    Google Scholar 

  4. R. Greeley and J. D. Iversen, Wind as a Geological Process on Earth, Mars, Venus and Titan (University Press, Cambridge, 1985).

    Book  Google Scholar 

  5. G. Wurm, J. Teiser, and D. Reiss, “Greenhouse and Thermophoretic Effects in Dust Layers: The Missing Link for Lifting of Dust on Mars,” Geophys. Rev. Lett. 35L10201(1–5) (2008).

  6. G. S. Golitsyn, I. G. Granberg, A. E. Aloyan, et al., “Study of Thermoconvective. Issledovanie termokonvektivnykh vynosov aridnogo aerozolya v Chernykh Zemlyakh Kalmykii” in Estestvennye i antropogennye aerozoli, Ed. by L.S. Ivleva (SPbGU, St. Petersburg, 1998) [in Russian].

    Google Scholar 

  7. G. S. Golitsyn, I. G. Granberg, A. V. Andronova, et al., “Investigation of Boundary Layer Fine Structure in Arid Regions,” Water, Air, Soil Pollut. Focus 3(2), 245–257 (2003).

    Article  Google Scholar 

  8. V. M. Ponomarev, “Micro-Scale Modelling of Pollution Dispersion in Atmospheric Boundary Layer,” Syst. Anal. Model. Simulat. 30, 39–44 (1998).

    Google Scholar 

  9. R. A. Bagnold, The Physics of Blown Sand and Desert Dunes (Methuen, London, 1941).

    Google Scholar 

  10. Y. Zhou, X. Guo, and X. J. Zheng, “Experimental Measurements of Wind-Sand Flux and Sand Transport for Naturally Mixed Sands,” Phys. Rev. E 66(1–9), 021305 (2002).

    Article  Google Scholar 

  11. Y. Shao, Physics and Modelling of Wind Erosion (Springer, New York, 2000).

    Google Scholar 

  12. G. S. Golitsyn, “Simple Theoretical and Experimental Study of Convection with Some Geophysical Applications and Analogies,” J. Fluid Mech. 95, 567–608 (1980).

    Article  Google Scholar 

  13. G. S. Golitsyn, Study of Convection with Geophysical Applications and Analogies (Gidrometeoizdat, Leningrad, 1980) [in Russian].

    Google Scholar 

  14. A. M. Obukhov, “Turbulence in a Temperature-Inhomogeneous Atmosphere,” Tr. Inst. Teoret. Geofiz. AN SSSR 1, 95–15 (1946).

    Google Scholar 

  15. A. S. Monin and A. M. Obukhov, “The Main Consistent Patterns of Turbulent Mixing in the Atmospheric Surface Layer,” Tr. Geofiz. Inst. Akad. Nauk SSSR, 24(151), 163–187 (1954).

    Google Scholar 

  16. A. S. Monin and A. M. Yaglom, Statistical Hydrodynamics (Gidrometeoizdat, Moscow, 1965), Pt. 1 [in Russian].

    Google Scholar 

  17. J. D. Lumley and G. A. Panofsky, Atmospheric Turbulence Structure (Mir, Moscow, 1966) [in Russian].

    Google Scholar 

  18. A. M. Obukhov, “On the Structure of Temperature Field and Velocity Field under Conditions of Free Convection,” Izv. Akad. Nauk SSSR, Ser. Geofiz. 9, 1392–1396 (1960).

    Google Scholar 

  19. J. Batchelor, Introduction to the Liquid Dynamics (Mir, Moscow, 1973) [in Russian].

    Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Nauka, Moscow, 1986; Pergamon Press, Oxford, 1987).

    Google Scholar 

  21. H. C. Wang, “Effect of Inceptive Motion on Particle Detachment from Surfaces,” Aerosol Sci. Technol 13, 386–393 (1990).

    Article  Google Scholar 

  22. M. E. O’Neil, “A Sphere in Contact with a Plane Wall in a Slow Linear Shear Flow,” Chem. Eng. Sci. 23, 1293–1298 (1968).

    Article  Google Scholar 

  23. L. Prandtl’, Hydroaeromechanics (Izd. Inostr. Liter., Moscow, 1949) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Granberg.

Additional information

Original Russian Text © E.B. Gledzer, I.G. Granberg, O.G. Chkhetiani, 2010, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2010, Vol. 46, No. 1, pp. 35–47.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gledzer, E.B., Granberg, I.G. & Chkhetiani, O.G. Air dynamics near the soil surface and convective emission of aerosol. Izv. Atmos. Ocean. Phys. 46, 29–40 (2010). https://doi.org/10.1134/S0001433810010056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433810010056

Keywords

Navigation