Skip to main content
Log in

Cluster ab initio modeling of local lattice instability in relaxor ferroelectrics

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The possibility of a zigzag-type instability occurring for oxygen atoms in B-O-B, B-O-Nb, and Nb-O-Nb linear chains is examined in disordered mixed perovskite compounds Pb(B 1/3, Nb2/3)O3 (B=Mg, Zn, Cd). Local adiabatic potentials for oxygen atoms are studied using total energy calculations by the ab initio Hartree-Fock + MP2 method for many-atomic clusters with different oxygen surroundings of lead atoms. The effect of lattice relaxation along the chain on the shape of the local potential in the transverse direction for the central oxygen atom is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and S. N. Popov, Sov. Phys. Solid State 2, 2584 (1961).

    Google Scholar 

  2. G. A. Smolenskii, J. Phys. Soc. Jpn. 28(Suppl.), 25 (1970).

    Google Scholar 

  3. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977; Mir, Moscow, 1981).

    Google Scholar 

  4. Z. G. Ye, Ferroelectrics 65, 193 (1996).

    Google Scholar 

  5. C. A. Randall and A. S. Bhalla, Jpn. J. Appl. Phys. 29, 327 (1990).

    Article  Google Scholar 

  6. V. A. Isupov, Ferroelectrics 90, 113 (1989); Ferroelectrics 143, 109 (1993).

    Google Scholar 

  7. L. E. Cross, Ferroelectrics 76, 241 (1987).

    Google Scholar 

  8. B. V. Westphal, W. Kleemann, and M. D. Glinchuk, Phys. Rev. Lett. 68, 847 (1992).

    Article  ADS  Google Scholar 

  9. F. Karadag, S. Palaz, S. Güngör, A. Mamedov, and O. E. Kvyatkovskii, Ferroelectrics 283, 61 (2003).

    Article  Google Scholar 

  10. O. E. Kvyatkovskii, Ferroelectrics 283, 67 (2003).

    Article  Google Scholar 

  11. S. Vakhrushev, S. Zhukov, G. Fetisov, and V. Chernyshov, J. Phys.: Condens. Matter 6, 4021 (1994).

    Article  ADS  Google Scholar 

  12. S. B. Vakhrushev, A. A. Naberezhnov, N. M. Okuneva, and B. N. Savenko, Fiz. Tverd. Tela (St. Petersburg) 37, 3621 (1995) [Phys. Solid State 37, 1993 (1995)].

    Google Scholar 

  13. P. Bonneau, P. Garnier, G. Calvarin, E. Husson, J. R. Gavarri, A. W. Hewat, and A. Morell, J. Solid State Chem. 91, 350 (1991).

    Article  ADS  Google Scholar 

  14. N. de Mathan, E. Husson, G. Calvarin, J. R. Gavarri, A. W. Hewat, and A. Morrell, J. Phys.: Condens. Matter 3, 8159 (1991).

    Article  ADS  Google Scholar 

  15. H. D. Rosenfeld and T. Egami, Ferroelectrics 164, 133 (1995).

    Google Scholar 

  16. O. E. Kvyatkovskii and B. F. Shchegolev, Ferroelectrics 153, 207 (1994).

    Google Scholar 

  17. O. E. Kvyatkovskii and B. F. Shchegolev, Izv. Ross. Akad. Nauk, Ser. Fiz. 64, 1060 (2002).

    Google Scholar 

  18. O. E. Kvyatkovskii, Fiz. Tverd. Tela (St. Petersburg) 44, 1087 (2002) [Phys. Solid State 44, 1135 (2002)].

    Google Scholar 

  19. K. A. Bokov and I. E. Mylnikova, Fiz. Tverd. Tela (Leningrad) 2, 2728 (1960) [Sov. Phys. Solid State 2, 2428 (1960)].

    Google Scholar 

  20. Landolt-Börnstein. Numerical Data and Functional Relationships in Science and Technology, Ed. by K.-H. Hellwege and A. M. Hellwege (Springer, Berlin, 1981), Group III, Vol. 9a.

    Google Scholar 

  21. A. A. Granovsky, www http://classic.chem.msu.su/gran/gamess/index.html.

  22. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. J. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993).

    Article  Google Scholar 

  23. S. Huzinaga and B. Miguel, Chem. Phys. Lett. 175, 289 (1990); Chem. Phys. Lett. 212, 260 (1993).

    Article  Google Scholar 

  24. T. H. Dunning, J. Chem. Phys. 55, 716 (1971).

    Google Scholar 

  25. M. J. Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys. 80, 3265 (1984).

    Article  ADS  Google Scholar 

  26. T. H. Dunning and P. J. Hay, in Methods of Electronic Structure Theory, Ed. by H. F. Schaefer III (Plenum, New York, 1977).

    Google Scholar 

  27. W. J. Stevens, M. Krauss, H. Basch, and P. G. Jasien, Can. J. Chem. 70, 612 (1992).

    Google Scholar 

  28. H. Arndt, F. Sauerbier, G. Schmidt, and L. A. Shelbanov, Ferroelectrics 79, 145 (1988).

    Google Scholar 

  29. L. S. Kamzina, N. N. Krainik, L. M. Sapozhnikova, and S. V. Ivanova, Sov. Phys. Solid State 33, 1169 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Fizika Tverdogo Tela, Vol. 46, No. 9, 2004, pp. 1663–1667.

Original English Text Copyright © 2004 by Kvyatkovskii, Karadag, Mamedov, Zakharov.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kvyatkovskii, O.E., Karadag, F., Mamedov, A. et al. Cluster ab initio modeling of local lattice instability in relaxor ferroelectrics. Phys. Solid State 46, 1717–1721 (2004). https://doi.org/10.1134/1.1799192

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1799192

Keywords

Navigation