Skip to main content
Log in

Current-voltage characteristics of a spin half-metallic transistor

  • Solid-State Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A new design of spin transistor based on half-metallic ferromagnets (referred to as a spin half-metallic transistor) is suggested, and its current-voltage characteristics are studied theoretically. Like a bipolar transistor, the new device can amplify current. At the same time, the properties of a spin half-metallic transistor depend considerably on the mutual orientation of the magnetizations of its three contacts. We also propose a device based on an F -F junction. This device consists of two single-domain half-metallic parts with opposite magnetizations. There is a range of voltages where the current-voltage characteristics of an F -F junction and a semiconductor diode are similar. The behavior of an F -F junction under different conditions is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. A. Prinz, Science 282, 1660 (1988); I. Zutic, cond-mat/0112368 (2001).

    Google Scholar 

  2. M. N. Bainbich et al., Phys. Rev. Lett. 61, 2472 (1987); G. Bransch et al., Phys. Rev. B 39, 4829 (1989).

    ADS  Google Scholar 

  3. M. A. M. Gujs and G. E. W. Bauer, Adv. Phys. 46, 285 (1997); V. V. Dobrovitski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) and A. K. Zvezdin, Usp. Fiz. Nauk 166, 439 (1996) [Phys. Usp. 39, 407 (1996)].

    ADS  Google Scholar 

  4. A. K. Zvezdin and S. N. Utochkin, Pis’ma Zh. Éksp. Teor. Fiz. 57, 433 (1993) [JETP Lett. 57, 439 (1993)].

    Google Scholar 

  5. R. Meservey and P. M. Tedrow, Phys. Rep. 238, 173 (1994).

    Article  ADS  Google Scholar 

  6. N. Garcia, M. Munoz, and Y.-W. Zhao, Phys. Rev. Lett. 82, 2923 (1999).

    ADS  Google Scholar 

  7. G. Tatara, Y.-W. Zhao, M. Munoz, and N. Garcia, Phys. Rev. Lett. 83, 2030 (1999); M. Munoz et al., Appl. Phys. Lett. 79, 2946 (2001); N. Garcia et al., Appl. Phys. Lett. 79, 4550 (2001).

    Article  ADS  Google Scholar 

  8. A. K. Zvezdin and A. F. Popkov, Pis’ma Zh. Éksp. Teor. Fiz. 71, 304 (2000) [JETP Lett. 71, 209 (2000)]; H. Imamura, N. Kobayashi, S. Takahashi, et al., Phys. Rev. Lett. 84, 1003 (2000).

    Google Scholar 

  9. L. R. Tagirov, B. P. Vodopyanov, and K. B. Efetov, Phys. Rev. B 63, 104428 (2001); L. L. Savchenko, A. K. Zvezdin, A. F. Popkov, et al., Fiz. Tverd. Tela (St. Petersburg) 43, 1449 (2000).

    Google Scholar 

  10. P. C. Van Son, H. Van Kempen, and P. Wyder, Phys. Rev. Lett. 58, 2271 (1987).

    ADS  Google Scholar 

  11. M. V. Tsoi et al., Phys. Rev. Lett. 80, 4281 (1998).

    Article  ADS  Google Scholar 

  12. A. G. Aronov, JETP Lett. 24, 32 (1976).

    ADS  Google Scholar 

  13. M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985); M. Johnson and R. H. Silsbee, Phys. Rev. B 35, 4959 (1987); Y. Ji et al., Phys. Rev. Lett. 86, 5585 (2001).

    ADS  Google Scholar 

  14. S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).

    Article  ADS  Google Scholar 

  15. M. Johnson, Science 260, 320 (1993).

    ADS  Google Scholar 

  16. H. Y. Hwang, S.-W. Cheong, N. P. Ong, et al., Phys. Rev. Lett. 77, 2041 (1996).

    ADS  Google Scholar 

  17. J. M. D. Coey et al., Phys. Rev. Lett. 87, 026601 (2001); J. M. D. Coey, Phys. Rev. B 64, 020407-1 (2001); J. M. D. Coey, Phys. Rev. Lett. 80, 3815 (1998).

    Google Scholar 

  18. J. M. De Teresa et al., Phys. Rev. Lett. 82, 4288 (1999).

    ADS  Google Scholar 

  19. A. Fert and I. A. Campbell, J. Phys. (Paris), Colloq. 32, C1 (1971).

    Google Scholar 

  20. T. Valet and A. Fert, Phys. Rev. B 48, 7099 (1993).

    Article  ADS  Google Scholar 

  21. Yu. A. Uspenskii, E. T. Kulatov, and S. V. Khalilov, Zh. Éksp. Teor. Fiz. 107, 1708 (1995) [JETP 80, 952 (1995)].

    Google Scholar 

  22. A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP, Bristol, 1997), Sec. 5.2.

    Google Scholar 

  23. E. I. Rashba, Phys. Rev. B 62, R16267 (2000).

  24. G. Vignale and M. Flatté, cond-mat/0202002 (2002).

  25. E. I. Wolf, Principles of Electron Tunneling Spectroscopy (Oxford University Press, 1985; Naukova Dumka, Kiev, 1990).

  26. M. Tinkkham, Introduction to Superconductivity (McGraw-Hill, New York, 1975; Atomizdat, Moscow, 1980).

    Google Scholar 

  27. I. V. Savel’ev, Principles of Theoretical Physics (Nauka, Moscow, 1996), Vol. 2.

    Google Scholar 

  28. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981; Mir, Moscow, 1984).

    Google Scholar 

  29. R. Vlutters, O. M. J. van’t Erve, R. Jansen, et al., Phys. Rev. B 65, 024416 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 73, No. 4, 2003, pp. 53–58.

Original Russian Text Copyright © 2003 by Zvezdin, Mishchenko, Khval’kovski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zvezdin, A.K., Mishchenko, A.S. & Khval’kovskii, A.V. Current-voltage characteristics of a spin half-metallic transistor. Tech. Phys. 48, 431–436 (2003). https://doi.org/10.1134/1.1568484

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1568484

Keywords

Navigation