Skip to main content
Log in

Mean-field theory for global binding systematics

  • 90th Anniversary of A.B. Migdal's Birthday Nuclei
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

We review some possible improvements of mean-field theory for application to nuclear-binding systematics. Up to now, microscopic theory has been less successful than models starting from the liquid drop in accurately describing the global binding systematics. We believe that there are good prospects for developing a better global theory, using modern forms of energy-density functionals and treating correlation energies systematically by the RPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiátecki, At. Data Nucl. Data Tables 59, 185 (1995).

    ADS  Google Scholar 

  2. D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972).

    Article  ADS  Google Scholar 

  3. Z. Patyk, A. Baran, J. F. Berger, et al., Phys. Rev. C 59, 704 (1999).

    Article  ADS  Google Scholar 

  4. B. A. Brown, Phys. Rev. C 58, 220 (1998).

    Article  ADS  Google Scholar 

  5. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996); J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, Phys. Rev. Lett. 82, 2544 (1999).

    Article  ADS  Google Scholar 

  6. S. A. Fayans, Pis'ma Zh. Éksp. Teor. Fiz. 68, 161 (1998) [JETP Lett. 68, 169 (1998)].

    Google Scholar 

  7. M. Bender, K. Rutz, P.-G. Reinhard, and J. A. Maruhn, Eur. Phys. J. A 7, 467 (2000).

    Article  ADS  Google Scholar 

  8. A. Valor, P.-H. Heenen, and P. Bonche, Nucl. Phys. A 671, 145 (2000).

    ADS  Google Scholar 

  9. R. W. Richardson and N. Sherman, Nucl. Phys. 52, 221 (1964).

    MathSciNet  Google Scholar 

  10. P. Ring and P. Schuck, The Nuclear Many Body Problem Springer-Verlag, New York, 1980).

    Google Scholar 

  11. D. J. Rowe, Phys. Rev. 175, 1283 (1968).

    Article  ADS  Google Scholar 

  12. J. Friedrich and P.-G. Reinhard, Phys. Rev. C 33, 335 (1986).

    ADS  Google Scholar 

  13. K. Hagino and G. F. Bertsch, Phys. Rev. C 61, 024307 (2000).

    Google Scholar 

  14. J. C. Parikh and D. J. Rowe, Phys. Rev. 175, 1293 (1968).

    Article  ADS  Google Scholar 

  15. J. Bang and J. Krumlinde, Nucl. Phys. A 141, 18 (1970).

    ADS  Google Scholar 

  16. Y. R. Shimizu, J. D. Garrett, R. A. Broglia, et al., Rev. Mod. Phys. 61, 131 (1989).

    Article  ADS  Google Scholar 

  17. J. Dukelsky, G. Röpke, and P. Schuck, Nucl. Phys. A 628, 17 (1998); J. Dukelsky and P. Schuck, Phys. Lett. B 464, 164 (1999).

    ADS  Google Scholar 

  18. M. Kyotoku, C. L. Lima, and Hsi-Tseng Chen, Phys. Rev. C 53, 2243 (1996).

    Article  ADS  Google Scholar 

  19. J. Högaasen-Feldman, Nucl. Phys. 28, 258 (1961).

    Google Scholar 

  20. H. J. Lipkin, Ann. Phys. (N.Y.) 9, 272 (1960); Y. Nogami, Phys. Rev. 134, B313 (1964); H. C. Pradhan, Y. Nogami, and J. Law, Nucl. Phys. A 201, 357 (1973).

    MathSciNet  MATH  Google Scholar 

  21. K. Hagino and G. F. Bertsch, Nucl. Phys. A 679, 163 (2000).

    ADS  Google Scholar 

  22. F. Dönau, D. Almehed, and R. G. Nazmitdinov, Phys. Rev. Lett. 83, 280 (1999).

    ADS  Google Scholar 

  23. Y. R. Shimizu, P. Donati, and R. A. Broglia, Phys. Rev. Lett. 85, 2260 (2000).

    ADS  Google Scholar 

  24. C. W. Johnson, G. F. Bertsch, and W. D. Hazelton, Comput. Phys. Commun. 120, 155 (1999).

    ADS  Google Scholar 

  25. A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin, New York, 1975; Mir, Moscow, 1981), Vol. 2.

    Google Scholar 

  26. J. Babst and P.-G. Reinhard, Z. Phys. D 42, 209 (1997).

    Article  Google Scholar 

  27. V. O. Nesterenko, W. Kleinig, V. V. Gudkov, et al., Phys. Rev. A 56, 607 (1997).

    Article  ADS  Google Scholar 

  28. V. O. Nesterenko, W. Kleinig, V. V. Gudkov, and J. Kvasil, Phys. Rev. C 53, 1632 (1996).

    Article  ADS  Google Scholar 

  29. T. Suzuki and H. Sagawa, Prog. Theor. Phys. 65, 565 (1981).

    ADS  Google Scholar 

  30. V. V. Pal'chik, N. I. Pyatov, and S. A. Fayans, Yad. Fiz. 34, 903 (1981) [Sov. J. Nucl. Phys. 34, 504 (1981)].

    Google Scholar 

  31. D. J. Rowe, Phys. Rev. 162, 866 (1967).

    Article  ADS  Google Scholar 

  32. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Nauka, Moscow, 1965; Interscience, New York, 1967).

    Google Scholar 

  33. P. Ring and J. Speth, Nucl. Phys. A 235, 315 (1974).

    ADS  Google Scholar 

  34. F. Barranco, R. A. Broglia, G. Gori, et al., Phys. Rev. Lett. 83, 2147 (1999).

    Article  ADS  Google Scholar 

  35. M. Baldo, U. Lombardo, E. Saperstein, and M. Zverev, Phys. Lett. B 459, 437 (1999).

    ADS  Google Scholar 

  36. M. Farine and P. Schuck, Phys. Lett. B 459, 444 (1999).

    ADS  Google Scholar 

  37. Y. Alhassid, G. F. Bertsch, D. J. Dean, and S. E. Koonin, Phys. Rev. Lett. 77, 1444 (1996).

    Article  ADS  Google Scholar 

  38. G. F. Bertsch and H. Esbensen, Ann. Phys. (N.Y.) 209, 327 (1991); H. Esbensen, G. F. Bertsch, and K. Hencken, Phys. Rev. C 56, 3054 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Yadernaya Fizika, Vol. 64, No. 4, 2001, pp. 646–652.

Original English Text Copyright © 2001 by Bertsch, Hagino.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertsch, G.F., Hagino, K. Mean-field theory for global binding systematics. Phys. Atom. Nuclei 64, 588–594 (2001). https://doi.org/10.1134/1.1368217

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1368217

Keywords

Navigation