Skip to main content
Log in

Nonlinear energy-selective nanoscale modifications of materials and dynamics in metals and semiconductors

  • Surfaces, Electron and Ion Emission
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Studies of nonlinear, energy-selective material interactions localized at surfaces, heterointerfaces, impurities, and defects in solids are described. Particular reference is made to a new molecular interaction effect caused by transfer of surface energy by low-energy collisions, a new noncontact nonlinear optical method of studying electron and hole dynamics at a heterointerface, and a new approach using a free-electron laser developed at Vanderbilt University to activate hydrogen-passivated dopants in silicon. In each case the unique characteristics of particle and photon beams, optimized for the technology, were used to extend the range of applications of these new energy-selective techniques to solve fundamental and applied problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Yao, Z. Hargitai, M. Albert et al., Phys. Rev. Lett. 81, 550 (1998).

    Article  ADS  Google Scholar 

  2. Y. Yao, PhD dissertation, Vanderbilt University (1997).

  3. L. D. Landau and E. Teller, Phys. Z. Sowjetunion 10, 34 (1936).

    Google Scholar 

  4. J. G. Mihaychuk, J. Bloch, and H. M. van Driel, Opt. Lett. 20, 2063 (1995).

    ADS  Google Scholar 

  5. J. Bloch, J. G. Mihaychuk, and H. M. van Driel, Phys. Rev. Lett. 77, 920 (1996).

    Article  ADS  Google Scholar 

  6. N. Shamir, J. G. Mihaychuk, and H. M. van Driel, J. Vac. Sci. Technol. A 15, 2081 (1997).

    Article  ADS  Google Scholar 

  7. W. Wang, G. Lüpke, M. Di Ventra et al., Phys. Rev. Lett. 81, 4224 (1998).

    ADS  Google Scholar 

  8. J. L. Alay and M. Hirose, Appl. Phys. Lett. 81, 1606 (1997).

    Google Scholar 

  9. P. Perfetti, C. Quaresima, C. Coluzza et al., Phys. Rev. Lett. 57, 2065 (1986).

    Article  ADS  Google Scholar 

  10. The Si-SiO 2 System, 1st ed., edited by P. Balk (Elsevier, Amsterdam, 1988).

    Google Scholar 

  11. A. Ueda, J. T. McKinley, R. G. Albridge et al., Mater. Res. Soc. Symp. Proc. 285, 215 (1993).

    Google Scholar 

  12. J. T. McKinley, R. G. Albridge, A. V. Barnes et al., Nucl. Instrum. Methods Phys. Res. A 341, 156 (1994).

    Article  ADS  Google Scholar 

  13. J. T. McKinley, R. G. Albridge, A. U. Barnes et al., J. Vac. Sci. Technol. A 12, 2323 (1994).

    Article  ADS  Google Scholar 

  14. G. Margaritondo, C. Coluzza, J. L. Staehli et al., J. Phys. (Paris) III 4, Colloque C9, Suppl. (1994).

  15. A. Ueda, R. G. Albridge, A. V. Barnes et al., Nucl. Instrum. Methods Phys. Res. B 100, 427 (1995).

    Article  ADS  Google Scholar 

  16. N. H. Talk, R. G. Albridge, A. V. Barnes et al., Appl. Surf. Sci. 106, 205 (1996).

    Google Scholar 

  17. K. Bergman, M. Stavola, S. J. Pearton, and J. Lopata, Phys. Rev. B 37, 2770 (1988).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Tekh. Fiz. 69, 76–80 (September 1999)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marka, S., Parks Cheney, C., Wang, W. et al. Nonlinear energy-selective nanoscale modifications of materials and dynamics in metals and semiconductors. Tech. Phys. 44, 1069–1072 (1999). https://doi.org/10.1134/1.1259473

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1259473

Keywords

Navigation