Skip to main content
Log in

Gravity assist maneuvers of a spacecraft in Jupiter system

  • Control Systems of Moving Objects
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

Low cost tours in the Jovian system using gravity assist maneuvers near its large bodies are considered. Limited dynamic capabilities of the application of such maneuvers require multiple flybys of these bodies. Clearly, it is important to regularly design optimal scenarios of sequential flybys of celestial bodies and to elaborate conditions for their execution. The paper is devoted to the description of a technique for designing such chains of flybys. Examples of using this technique for the elaboration of specific versions of the Laplace-P mission are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Levantovskii, On a Rocket to the Moon (Fizmatlit, Moscow, 1960) [in Russian].

    Google Scholar 

  2. M. A. Minovitch, “The determination and characteristics of ballistic interplanetary trajectories under the influence of multiple planetary attractions,” Jet Propulsion Lab., Pasadena, Calif., Tech. Rept, 32–464 (1963).

    Google Scholar 

  3. G. B. Efimov, “Control problems in contingency during flight of a space vehicle with low thrust engine,” J. Comput. Syst. Sci. Int., 47, 603–612 (2008).

    Article  MATH  Google Scholar 

  4. E. L. Akim, G. S. Zaslavskii, I. M. Morskoi, V. A. Stepan’yants, and A. G. Tuchin, “Ballistics, navigation, and control of flight of a spacecraft in the Phobos-sample-return project,” J. Comput. Syst. Sci. Int. 41, 818–826 (2002).

    Google Scholar 

  5. G. K. Borovin, Yu. F. Golubev, A. V. Grushevskii, V. V. Koryanov, and A. G. Tuchin, “Flights in Jupiter system using gravity assist maneuvers near Galilean moons,” Preprint No. 72, IPM RAN (Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 2013). http://library.keldysh.ru/preprint.asp?id=2013-72.

    Google Scholar 

  6. A. Boutonnet and J. Schoenmaekers, “Mission analysis for the JUICE mission,” AAS/AIAA Space Flight Mechanics Meeting, Charleston, 2012, AAS paper 12-207.

  7. A. Boutonnet and J. Schoenmaekers, “JUICE: Consolidated report on mission analysis (CReMA),” Reference WP-578, No. 1, 2012.

    Google Scholar 

  8. A. Boutonnet, J. Schoenmaekers, and D. Garcia, “JGO: consolidated report on mission analysis (CReMA),” Tech. Rep., ESA, ESOC, Darmstadt, Germany, 2010.

    Google Scholar 

  9. Yu. F. Golubev, A. V. Grushevskii, V. V. Koryanov, and A. G. Tuchin, “A method of orbit designing using gravity assist maneuvers to the landing on the Jupiter’s moon Ganymede,” in Third Moscow Solar System Symp., Moscow, 2012. http://ms2012.cosmos.ru/presentations.

  10. Yu. F. Golubev, A. V. Grushevskii, V. V. Koryanov, and A. G. Tuchin, “A method of orbits designing using gravity assist maneuvers to the landing on the Jovian’s moons,” in Int. Colloquium and Workshop Ganymede Lander, Moscow, 2013. http://glcw2013.cosmos.ru/presentations.

  11. E. Barrabez, G. Gomez, and J. Rodriguez-Canabal, “Notes for the gravitational assisted trajectories,” in Advanced Topics in Astrodynamics (Barcelona, 2004). www.ieec.fcr.es/astro04/notes/gravity.pdf.

    Google Scholar 

  12. V. I. Levantovskii, Elementary Mechanics of Space Flight (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  13. Navigation and Ancillary Information Facility (NAIF). http://naif.jpl.nasa.gov/naif/index.html. Cited June 8, 2013.

  14. “Galilean satellite ephemeris.” ftp://naif.jpl.nasa.gov/pub/naif/generic-kernels/spk/satellites/jup230.bsp. Cited June 8, 2013.

  15. C. F. Yoder, “Astrometric and geodetic properties of earth and the solar system.” http://www.agu.org/books/rf/v001/RF001p0001/RF001p0001.pdf. Cited September 8, 2010.

  16. D. Senske, L. Prockter, R. Pappalardo, et al., “Science from the Europa Clipper mission concept: Exploring the habitability of Europa,” in Int. Colloquium and Workshop Ganymede Lander, Moscow, 2013. http://glcw2013.cosmos.ru/presentations.

  17. “Optimization of Ganymede Approach Scheme using a sequence of gravity assist maneuvers,” Tech. Rep. No. 5-006-12, IPM RAN (Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 2009) [in Russian].

  18. “Elaboration of proposals for the flight to Jupiter and ballistic support of Jupiter and Europa mission on the Earth-Jupiter flight leg,” Tech. Rep. No. 5-012-09, IPM RAN (Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 2009) [in Russian].

  19. R. Woolley, “Endgame strategies for planetary moon orbiters,” PhD Thesis, Department of Aerospace Engineering Sciences, University of Colorado, Boulder, 2010.

    Google Scholar 

  20. M. Yu. Ovchinnikov, S. P. Trofimov, and M. G. Shirobokov, “Method of virtual trajectories for designing interplanetary missions with gravity assist maneuvers,” Preprint No. 9, IPM RAN (Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 2012). http://library.keldysh.ru/preprint.asp?id=2012-9.

    Google Scholar 

  21. D. R. Myatt, V. M. Becerra, S. J. Nasuto, and J. M. Bishop, “Advanced global optimization for mission analysis and design,” Final Report, Ariadna id 03/4101, contract No. 18138/04/NL/MV, 2004. http://www.esa.int/gsp/ACT/doc/ACT-RPT-ARIADNA-03-4101-Rd.pdf.

  22. S. Campagnola and R. P. Russell, “Endgame problem. Part 1: V-infinity leveraging technique and leveraging graph,” J. Guidance, Control, Dynamics 33, 463–475 (2010).

    Article  Google Scholar 

  23. S. Campagnola and R. P. Russell, “Endgame problem. Part 2: Multi-body technique and TP Graph,” J. Guidance, Control, Dynamics 33, 476–486 (2010).

    Article  Google Scholar 

  24. N. J. Strange, R. Russell, and B. Buffington, “Mapping the V globe,” in AAS/AIAA Astrodynamics Specialist Conference and Exhibit, Mackinac Island, Michigan, 2007, AAS paper 07-277.

  25. S. Campagnola, P. Skerritt, and R. P. Russell, “Flybys in the planar, circular, restricted, three-body problem,” in Proc. of the AAS/AAIAA Astrodynamics Specialist Conference, Girdwood, Alaska, 2011, AAS paper 11-245.

  26. S. Campagnola, A. Boutonnet, J. Schoenmaekers, D. J. Grebov, A. E. Petropoulos, and R. P. Russell, “Tisser-and-leveraging transfers,” in AAS/AIAA Space Flight Mechanics Meeting, Charleston, 2012, AAS paper 12-185.

  27. H. Poincaré, Selected Works, Vol. 1. New Methods of Celestial Mechanics (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  28. V. Szebehely, Theory of Orbits, the Restricted Problem of Three Bodies (Academic, New York, 1967; Nauka, Moscow, 1982).

    Google Scholar 

  29. F. F. Tisserand, Traité de Méchanique Céleste (Gauthier-Villars, Paris, 1896), Vol. 4.

    Google Scholar 

  30. M. F. Subbotin, Introduction to Theoretical Astronomy (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  31. C. Uphoff, P. H. Roberts, and L. D. Friedman, “Orbit design concepts for jupiter orbiter missions,” J. Spacecraft 13(6), 348–355 (1976).

    Article  Google Scholar 

  32. A. V. Labunsky, O. V. Papkov, and K. G. Sukhanov, “Multiple gravity assist interplanetary trajectories,” in Earth Space Institute Book Series (Gordon and Breach, 1998), pp. 33–68.

    Google Scholar 

  33. N. J. Strange and J. M. Longuski, “Graphical method for gravity-assist trajectory design,” J. Spacecraft Rockets 39(1), 9–16 (2002).

    Article  Google Scholar 

  34. V. I. Arnol’d, Mathematical Methods of Classical Mechanics (Nauka, Moscow, 1974; Springer, New York, 1989).

    MATH  Google Scholar 

  35. G. S. Landsberg, Optics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  36. Yu. F. Golubev, A. V. Grushevskii, and R. Z. Khairullin, “On the structure of reachability domain of descending spacecraft,” Preprint No. 78, IPM RAN (Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 1993).

    Google Scholar 

  37. Yu. F. Golubev, A. V. Grushevskii, and R. Z. Khairullin, “On the structure of reachability domain of descending spacecraft,” Kosm. Issl. 34(2), 180–189 (1996).

    Google Scholar 

  38. A. V. Grushevskii, “Constrauction of reachability domains of nonelastic anisotropic billiards.” Preprint No. 76, IPM RAN (Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 2007). http://library.keldysh.ru/preprint.asp?id=2007-76.

    Google Scholar 

  39. I. M. Sobol’, Monte Carlo Method (Nauka, Moscow, 1978) [in Russian].

    MATH  Google Scholar 

  40. M. V. Podzolko and I. V. Getselev, “Radiation conditions of mission to Jupiter’s moon Ganymede,” Int. Colloquium and Workshop Ganymede Lander, Moscow, 2013, pp. 4–8.

  41. “Universal Mechanism (UM): Simulation of dynamics of mechanical systems.” http://www.umlab.ru. Cited September 8, 2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. F. Golubev.

Additional information

Original Russian Text © Yu.F. Golubev, A.V. Grushevskii, V.V. Koryanov, A.G. Tuchin, 2014, published in Izvestiya Akademii Nauk. Teoriya i Sistemy Upravleniya, 2014, No. 3, pp. 149–167.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubev, Y.F., Grushevskii, A.V., Koryanov, V.V. et al. Gravity assist maneuvers of a spacecraft in Jupiter system. J. Comput. Syst. Sci. Int. 53, 445–463 (2014). https://doi.org/10.1134/S1064230714030083

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230714030083

Keywords

Navigation