Skip to main content
Log in

Alkaline basalt from the Central Iran, a mark of previously subducted Paleo-Tethys oceanic crust

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

In western part of the CEIM (Central-East Iranian Microcontinent) (Bayazeh area, Isfahan province, Iran), a series of Paleozoic basaltic rocks, occur. Major minerals of these basalts are olivine, clinopyroxene (diopside, augite), plagioclase (albite), sanidine, amphibole (kaersutite), phlogopite, ilmenite and magnetite. Secondary minerals include epidote, pumpellyite, albite, calcite and chlorite. Olivine and clinopyroxene are as phenocryst, while feldspars are restricted to groundmass. Chemical composition of clinopyroxenes indicates crystallization during ascending of magma. Geochemical analysis of whole rock samples shows that these rocks are characterized by low SiO2 (43.21–48.45 wt %), high TiO2 (1.81–3.00 wt %) and P2O5 (0.18–0.34 wt %). Petrography, chemistry of clinopyroxenes and whole rock analyses reveal an alkaline nature of these basalts. They are enriched in alkalis (Na2O + K2O = 4.1–7.7 wt %), LILE, HFSE and LREE. The Bayazeh alkali-basalts present strong enrichment in LREE relative to HREE (La/Lu ratio = 77.6–119.6) and were dominantly derived from partial melting of a metasomatized asthenospheric garnet-amphibole lherzolite. Field relationships reveal that junction of faults in west of the Bayazeh prepared a suitable path for ascending of magma from deep regions to surface and intra-plate continental magmatism. The Paleo-Tethys subduction from lower to upper Paleozoic is too enough for mantle enrichment in volatiles and basaltic alkaline magmatisrn in upper Paleozoic of Bayazeh area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aistov, L., Melnikov, B., Krivyakin, B., and Morozov, L., Geology of the Khur Area (Central Iran), Geol. Surv. Iran, 1984, Report TE/No. 20.

  • Bagheri, S., The Exotic Paleo-tethys Terrane in Central Iran: New Geological Data from Anarak, Jandaq and Posht-e-Badam areas, PhD thesis, Lausanne: Univ. Lausanne, 2007.

    Google Scholar 

  • Bayat, F., Petrology of Metabasites in Meraji and Chah Palang Areas (NE of Isfahan province, Iran), MSc Thesis in Petrology, University of Isfahan, 2009.

  • Cebriá, J.M., López-Ruiz, J., Carmona, J., and Doblas, M., Quantitative Petrogenetic Constraints on the Pliocene Alkali Basaltic Volcanism of the SE Spain Volcanic Province, J. Volcanol. Geotherm. Res., 2009, vol. 185, pp. 172–180.

    Article  Google Scholar 

  • Çoban, H., Basalt Magma Genesis and Fractionation in Collision- and Extension-Related Provinces: A Comparison between Eastern, Central and Western Anatolia, Earth-Sci. Rev., 2007, vol. 80, pp. 219–238.

    Article  Google Scholar 

  • Dasgupta, R., Hirschmann, M.M., and Smith, N.D., Partial Melting Experiments of Peridotite +CO2 at 3 GPa and Genesis of Alkalic Ocean Island Basalts, J. Petrol., 2007, vol. 48, pp. 2093–2124.

    Article  Google Scholar 

  • Delor, C.P. and Rock, N.M.S., Alkaline-Ultramafic Lamprophyre Dykes from the Vestfold Hills, Princess Elizabeth Land (East Antarctica): Primitive Magmas of Deep Mantle Origin, Antarctic Sci., 1991, vol. 3, pp. 419–432.

    Article  Google Scholar 

  • Duggen, S., Hoernle, K., van den Bogaard, P., and Garbe-Schönberg, D., Post-Collisional Transition from Subduction- to Intraplate-Type Magmatism in the Westernmost Mediterranean: Evidence for Continental-Edge Delamination of Subcontinental Lithosphere, J. Petrol., 2005, vol. 46, 1155–1201.

    Article  Google Scholar 

  • Fitton, J.G., The OIB paradox, Geol. Soc. Am. Sp. Pap., 2007, vol. 430, pp. 387–412.

    Google Scholar 

  • Furman, T. and Graham, D., Erosion of Lithospheric Mantle beneath the East African Rift System: Geochemical Evidence from the Kivu Volcanic Province, Lithos, 1999, vol. 48, pp. 237–262.

    Article  Google Scholar 

  • Gerya, T.V., Perchuk, L.L., Maresch, W.V., Willner, A.P., Van Reenen, D.D., and Smit, C.A., Thermal Regime and Gravitational Instability of Multi-Layered Continental Crust: Implications for the Buoyant Exhumation of High-Grade Metamorphic Rocks, Eur. J. Mineral., 2002, vol. 14, pp. 687–699.

    Article  Google Scholar 

  • Irvine, T.N. and Barager, W.R.A., A Guide to the Chemical Classification of the Common Volcanic Rocks, Can. J. Earth Sci., 1971, vol. 8, pp. 523–548.

    Article  Google Scholar 

  • Jaques, A.L., Creaser, R.A., Ferguson, J., and Smith, C.B., A review of the Alkaline Rocks of Australia, Geol. Soc. S. Afr. Trans., 1985, vol. 88, 311–334.

    Google Scholar 

  • Jochum, K.P., McDonough, W.F., Palme, H., and Spettel, B., Compositional Constraints on the Continental Lithospheric Mantle from Trace Elements in Spinel Peridotite Xenoliths, Nature, 1989, vol. 340, 548–550.

    Article  Google Scholar 

  • Kretz, R., Symbols for Rock-Forming Minerals, Am. Mineral., 1983, vol. 68, pp. 277–279.

    Google Scholar 

  • Kuritani, T., Phenocryst Crystallization during Ascent of Alkali Basalt Magma at Rishiri Volcano, Northern Japan, J. Volcanol. Geotherm. Res., 1999, vol. 88, pp. 77–97.

    Article  Google Scholar 

  • Le Maitre, R.W., Igneous Rocks: a Classification and Glossary of Terms, Cambridge: Cambridge University Press, 2002, 2nd Edition.

    Book  Google Scholar 

  • Linnen, R.L. and Keppler, H., Melt Composition Control of Zr/Hf Fractionation in Magmatic Processes, Geochim. et Cosmochim. Acta, 2002, vol. 66, pp. 3293–3301.

    Article  Google Scholar 

  • Litasov, Y., Hasenaka, T., Litasov, K., Yarmolyuk, V., Sugorakova, A., Lebedev, V., Sasaki, M., and Taniguchi, H., Petrologic Characteristics of Cenozoic Alkaline Basalts from the Azas Plateau, Northeast Tuva (Russia), Center for Northeast Asian Studies, Tohoku University, 2001, no. 3, pp. 201–226.

  • McDonough, W.F. and Sun, S.S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  • Middlemost, E.A.K., Iron Oxidation Ratios, Norms and the Classification of Volcanic Rocks, Chem. Geol., 1989, vol. 77, pp. 19–26.

    Article  Google Scholar 

  • Milovanović, D., Karamata, S., and Banjeşević, M., Petrology of Alkali Basalts of Zlot, Timok Magmatic Complex (Eastern Serbia), Tectonophysics, 2005, vol. 410, pp. 501–509.

    Article  Google Scholar 

  • Nicholson, H. and Latin, D., Olivine Tholeiites from Krafla, Iceland: Evidence for Variations in the Melt Fraction within a Plume, J. Petrol., 1992, vol. 33, pp. 1105–1124.

    Google Scholar 

  • Pearce, J.A. and Norry, M.J., Petrogenetic Implications of Ti, Zr, Y and Nb Variations in Volcanic Rocks, Contrib. Mineral. Petrol., 1979, vol. 69, pp. 33–47.

    Article  Google Scholar 

  • Pilet, S., Hernandez, J., Sylvester, P., and Poujol, M., The Metasomatic Alternative for Ocean Island Basalt Chemical Heterogeneity, Earth Planet. Sci. Lett., 2005, vol. 236, pp. 148–166.

    Article  Google Scholar 

  • Pirnia, T., Arai, S., and Torabi, G., Post-Deformational Impregnation of Depleted MORB in Nain Lherzolite (Central Iran), J. Mineral. Petrol. Sci., 2010, vol. 105, pp. 74–79.

    Article  Google Scholar 

  • Rudnick, R.L. and Gao, S., Composition of the Continental Crust, in Treatise on Geochemistry, Holland, H.D. and Turelian, K.K., Ed., Oxford: Elsevier-Pergamon, 2003, pp. 1–64.

    Chapter  Google Scholar 

  • Shaw, A.M., Hilton, D.R., Fischer, T.P., Walker, J.A., and Alvarado, G.E., Contrasting He-C relationships in Nicaragua and Costa Rica: Insights into C Cycling through Subduction Zones, Earth Planet. Sci. Lett., 2003, vol. 214, pp. 499–513.

    Article  Google Scholar 

  • Shirdashtzadeh, N., Torabi, G., and Arai, S., Metamorphism and Metasomatism in the Jurassic Nain Ophiolithic Mélange, Central Iran, Neues Jahrb. Geol. Paläontol.—Abhandlungen, 2010, vol. 255, no. 3, 255–275.

    Article  Google Scholar 

  • Sun. S.S. and McDonough, W.F., Chemical and Isotopic Systematic of Oceanic Basalt: Implication for Mantle Composition and Processes, in Magmatism in Oceanic Basins, Geol. Soc. London, Sp. Publ., 1989, vol. 42, pp. 313–346.

    Google Scholar 

  • Tang, Y.-J., Zhang, H.-F., and Ying, J.-F., Asthenosphere-Lithospheric Mantle Interaction in an Extensional Regime: Implication from the Geochemistry of Cenozoic Basalts from Taihang Mountains, North China Craton, Chem. Geol., 2006, vol. 233, pp. 309–327.

    Article  Google Scholar 

  • Tonarini, S., Armienti, P., D’orazio, M., and Innocenti, F., Subduction-Like Fluids in the Genesis of Mt. Etna Magmas: Evidence from Boron Isotopes and Fluid Mobile Elements, Earth Planet. Sci. Lett., 2001, vol. 192, pp. 471–483.

    Article  Google Scholar 

  • Torabi, G., Early Oligocene Alkaline Lamprophyric Dykes from the Jandaq Area (Isfahan Province, Central Iran): An Evidence of CEIM Confining Oceanic Crust Subduction, Island Arc, 2010, vol. 19, pp. 227–291.

    Article  Google Scholar 

  • Torabi, G., Late Permian Lamprophyric Magmatism in NE of Isfahan Province, Iran: a Mark of Rifting in the Gondwana Land, Comptes Rendus Geoscience, 2009a, vol. 341, pp. 85–94.

    Article  Google Scholar 

  • Torabi, G., Petrology of Anarak Area ophiolites (Central Iran, NE of Isfahan Province), PhD thesis in petrology, Tarbiat Modarres University, 2004.

  • Torabi, G., Subduction-Related Eocene Shoshonites from the Cenozoic Urumieh-Dokhrat Magmatic Arc (Qaleh-Khargooshi Area, West of the Yazd Province, Iran), Turk. J. Earth Sci., 2009b, vol. 18, pp. 583–613.

    Google Scholar 

  • Torabi, G., Chromitite Potential in Mantle Peridotites of the Jandaq Ophiolite (Isfahan province, Central Iran), Comptes Rendus Geoscience, 2009c, vol. 341, pp. 982–992.

    Article  Google Scholar 

  • Turner, S. and Hawkesworth, C., The Nature of the Sub-Continental Mantle: Constraints from the Major Element Composition of Continental Flood Basalts, Chem. Geol., 1995, vol. 120, pp. 295–314.

    Article  Google Scholar 

  • Winchester, J.A. and Floyd, P.A., Geochemical Discrimination of Different Magma Series and Their Differentiation Products using Immobile Elements, Chem. Geol., 1977, vol. 20, pp. 325–343.

    Article  Google Scholar 

  • Wood, D.A., The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification, Earth Planet. Sci. Lett., 1980, vol. 50, pp. 1–30.

    Article  Google Scholar 

  • Yan, J. and Zhao, J.-X., Cenozoic Alkali Basalts from Jingpohu, NE China: The Role of Lithosphere-Asthenosphere Interaction, J. Asian Earth Sci., 2008, vol. 33, pp. 106–121.

    Article  Google Scholar 

  • Zeng, G., Chen, L.-H., Xu, X.-S., Jiang, S.-Y., and Hofmann, A.W., Carbonated Mantle Sources for Cenozoic Intra-Plate Alkaline Basalts in Shandong, North China, Chem. Geol., 2010. doi: 10.1016/j.chemgeo.2010.02.009, (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghodrat Torabi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torabi, G., Hemmati, O. Alkaline basalt from the Central Iran, a mark of previously subducted Paleo-Tethys oceanic crust. Petrology 19, 690–704 (2011). https://doi.org/10.1134/S0869591111070034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591111070034

Keywords

Navigation