Skip to main content
Log in

Synthesis, structure formation, and thermal expansion of A+M2+MgE4+(PO4)3

  • Synthesis and Properties of Inorganic Compounds
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The compounds AMMgE(PO4)3 (A = Na, K, Rb, Cs; M = Sr, Pb, Ba; E = Ti, Zr) were synthesized by the sol–gel procedure followed by heat treatment and studied by X-ray diffraction, differential thermal and electron microprobe analysis, and IR spectroscopy. The phosphates crystallize in the kosnarite (KZr2(PO4)3, space group \(R\bar 3\)) and langbeinite (K2Mg2(SO4)3, space group P213) structural types. The structure of KPbMgTi(PO4)3 was refined by full-profile analysis (space group P213, Z = 4, a = 9.8540(3) Å, V = 956.83(4) Å3). The structure is formed by a framework of vertex-sharing MgO6 and TiO6 octahedra and PO4 tetrahedra. The K and Pb atoms fully occupy the extra-framework cavities and are coordinated to nine oxygen atoms. A variable-temperature X-ray diffraction study of KPbMgTi(PO4)3 showed that the compound expands isotropically and refer to medium-expansion class (linear thermal expansion coefficients α a = α b = α c = 8 × 10–6°C–1). The number of stretching and bending modes of the PO4 tetrahedron observed in the IR spectra is in agreement with that predicted by the factor group analysis of vibrations for space groups \(R\bar 3\) and P213. A structural transition from the cubic langbeinite to the rhombohedral kosnarite was found for CsSrMgZr(PO4)3. In the morphotropic series of ASrMgZr(PO4)3 (A = Na, K, Rb, Cs) the kosnarite–langbeinite transition occurs upon the Na → K replacement. The effect of the sizes and electronegativities of cations combined in AMMgE(PO4)3 on the change of the structural type was analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Pet’kov, Russ. Chem. Rev. 81, 606 (2012).

    Article  Google Scholar 

  2. V. I. Pet’kov, I. A. Shchelokov, M. D. Surazhskaya, et al., Russ. J. Inorg. Chem 55, 1352 (2010).

    Article  Google Scholar 

  3. R. Masse, A. Durif, J. C. Guitel, and I. Tordjman, Bull. Soc. Fr. Miner. Cristallogr. 95, 47 (1972).

    CAS  Google Scholar 

  4. A. Ono, Bull. Chem. Soc. Jpn. 58, 381 (1985).

    Article  CAS  Google Scholar 

  5. R. Perret, J. Less-Common Met. 144, 195 (1988).

    Article  CAS  Google Scholar 

  6. E. A. Asabina, V. I. Pet’kov, E. R. Gobechiya, et al., Russ. J. Inorg. Chem. 53, 40 (2008).

    Article  Google Scholar 

  7. H. M. Rietveld, Acta Crystallogr. 22, 151 (1967).

    Article  CAS  Google Scholar 

  8. Y. I. Kim and F. Izumi, J. Ceram. Soc. Jpn. 102, 401 (1994).

    Article  CAS  Google Scholar 

  9. F. Izumi, The Rietveld Method, Ed. by R. A. Young (Oxford Univ. Press, New York, 1993), ch. 13.

    Google Scholar 

  10. A. Leclaire, A. Benmoussa, M. M. Borel, et al., J. Solid State Chem. 78, 227 (1989).

    Article  CAS  Google Scholar 

  11. T. S. Sysoeva, E. A. Asabina, V. I. Pet’kov, and V. S. Kurazhkovskaya, Russ. J. Inorg. Chem. 54, 829 (2009).

    Article  Google Scholar 

  12. N. Anantharamulu, Rao K. Koteswara, G. Rambabu, et al., J. Mater. Sci. 46, 2821 (2011).

    Article  CAS  Google Scholar 

  13. V. I. Pet’kov and E. A. Asabina, Indian J. Chem. A 52, 350 (2013).

    Google Scholar 

  14. V. I. Pet’kov, E. V. Zhilkin, E. A. Asabina, and E. Yu. Borovikova, Russ. J. Inorg. Chem. 59, 1087 (2014).

    Article  Google Scholar 

  15. A. R. Zaripov, V. A. Orlova, V. I. Pet’kov, et al., Russ. J. Inorg. Chem. 54, 45 (2009).

    Article  Google Scholar 

  16. R. D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).

    Article  Google Scholar 

  17. L. Pauling, The Nature of the Chemical Bond (Cornell Univ. Press, Ithaca, 1960).

    Google Scholar 

  18. V. I. Pet’kov and E. A. Asabina, Glass Ceram. 61, 233 (2004).

    Article  Google Scholar 

  19. V. I. Pet’kov, A. S. Shipilov, and M. V. Sukhanov, Inorg. Mater., 51, 1079 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Pet’kov.

Additional information

Original Russian Text © V.I. Pet’kov, A.A. Alekseev, E.A. Asabina, E.Yu. Borovikova, A.M. Koval’skii, 2017, published in Zhurnal Neorganicheskoi Khimii, 2017, Vol. 62, No. 7, pp. 887–896.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pet’kov, V.I., Alekseev, A.A., Asabina, E.A. et al. Synthesis, structure formation, and thermal expansion of A+M2+MgE4+(PO4)3 . Russ. J. Inorg. Chem. 62, 870–878 (2017). https://doi.org/10.1134/S0036023617070178

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023617070178

Navigation