Skip to main content
Log in

Linear volcanic chains in oceans: Possible formation mechanisms

  • Published:
Geotectonics Aims and scope

Abstract

Possible formation mechanisms of linear volcanic chains in oceans are considered with particular emphasis placed on tectonic processes in the lithosphere. Nonparallel patterns of volcanic chains, as well as irregular variations in volcanism ages, may be due to the formation of sigmoid fractures that appear in certain stress fields. The tectonic stress may control the dimensions of volcanic chains, their lengths, and the volcanism intensity. At the same time, certain assumptions are necessary. For example, to explain shallow magmatism, it must be assumed that the temperature of the asthenosphere is close to the melting point of mantle material, although the asthenosphere may be highly variable in the degree of enrichment. Hence, even insignificant variations in the temperature, volatile contents, or bulk composition may provoke large-volume melting. It is shown that the rotation of the Earth causes additional displacements of plates relative to the underlying mantle. While a fertile fragment exists in the mantle, such an inhomogeneity remains stationary relative to the moving plate and the melting of this inhomogeneity may result in the growth of volcanic uplift. The global stress field determined by plate boundaries and an intraplate factor controls the distribution of the stress fields, which are responsible for the formation of volcanic chains. It is concluded that the available data on the age progressions and character of linear volcanic chains within oceanic plates provide no grounds for any single hypothesis explaining the formation of these chains. The most universal hypothesis seems to be the explanation based on shallow tectonic processes. The localization and formation mechanism of volcanic chains are determined by the stress field in the lithosphere, thermal compression and expansion, the specific features of the plate structure, melt dynamics, and the occurrence of fertile material in the mantle rather than by temperature. The volume of volcanic eruptions depends on the degree of fertility of the mantle material; the presence of volatiles; the plate thickness; and, to a lesser extent, the temperature. At the same time, the formation of such large volcanic uplifts as Hawaii and Iceland may be explained in terms of the classic plume hypothesis. Thus, it is suggested that the formation of linear volcanic chains is a polygenetic process resulting from the combination of different geodynamic factors. Further detailed investigation will give rise to new geodynamic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. L. Dobretsov, “Periodicity of Geological Processes and Deep Geodynamics,” Geol. Geofiz. 35(5), 5–19 (1994).

    Google Scholar 

  2. N. L. Dobretsov and A. G. Kirdyashkin, “Sources of Mantle Plumes,” Dokl. Akad. Nauk 373(1), 84–86 (2000) [Dokl. Earth Sci. 373 (5), 879–881 (2000)].

    Google Scholar 

  3. A. A. Peive, “Alkaline Volcanism of the Rio Grande Plateau (Southern Atlantic),” Dokl. Akad. Nauk 401(6), 794–798 (2005) [Dokl. Earth Sci. 401A (3), 391–394 (2005)].

    Google Scholar 

  4. Yu. M. Pushcharovsky, “The Earth’s Interior: Mantle Structure and Tectonics,” Priroda (Moscow, Russ. Fed.), No. 3, 13–15 (2001).

    Google Scholar 

  5. Yu. M. Pushcharovsky and D. Yu. Pushcharovsky, “Geospheres of the Earth’s Mantle,” Geotektonika 33(1), 3–14 (1999) [Geotectonics 33 (1), 1–11 (1999)].

    Google Scholar 

  6. V. P. Utkin, “Role of Strike-Slip Faulting of the Oceanic Lithosphere in the Formation of Pacific Volcanic Belts,” Dokl. Akad. Nauk 408(5), 650–655 (2006) [Dokl. Earth Sci. 409 (5), 692–696 (2006)].

    Google Scholar 

  7. D. L. Anderson, “The Thermal State of the Upper Mantle: No Role for Mantle Plumes,” Geophys. Rev. Lett. 27, 3623–3626 (2000).

    Article  Google Scholar 

  8. E. K. Beutel and D. L. Anderson, Melting Anomalies that Cross Ridges // http://www.mantleplumes.org (2005).

  9. E. Bonatti, C. G. Harrison, J. Honnorez, et al., “Easter Volcanic Chain (Southeast Pacific): A Mantle Hot Line,” J. Geophys. Res. 82(17), 2457–2478 (1977).

    Google Scholar 

  10. K. Burke, W. S. Kidd, and J. T. Wilson, “Relative and Latitudinal Motion of Atlantic Hotspots,” Nature 245, 133–137 (1973).

    Article  Google Scholar 

  11. J. A. Conder, D. W. Forsyth, and E. M. Parmentier, “Asthenospheric Flow and Asymmetry of the East Pacific Rise,” J. Geophys. Res. 107(B12), 2344–2351 (2002).

    Article  Google Scholar 

  12. M. J. Cordery, G. F. Davies, and I. H. Campbell, “Genesis of Flood Basalts from Eclogite-Bearing Mantle Plumes,” J. Geophys. Res. 102, 20179–20197 (1997).

    Article  Google Scholar 

  13. V. Courtillot, A. Davaille, J. Besse, and J. Stock, “Three Distinct Types of Hotspots in the Earth’s Mantle,” Earth Planet. Sci. Lett. 205, 295–308 (2003).

    Article  Google Scholar 

  14. A. S. Davis, L. B. Gray, D. A. Clague, and J. R. Hein, “The Line Islands Revisited: New 40Ar/39Ar Geochronologic Evidence for Episodes of Volcanism Due to Lithospheric Extension,” Geochem. Geophys. Geosyst. 3, 1–28 (2002).

    Article  Google Scholar 

  15. W. R. Dickinson, “Geomorphology and Geodynamics of the Cook-Austral Island-Seamount Chain in the South Pacific Ocean: Implications for Hotspots and Plumes,” Int. Geol. Review 40, 1039–1075 (1998).

    Article  Google Scholar 

  16. J. J. Dieu, J. W. Hawkins, and J. H. Natland, “Tapping of an Enriched Asthenospheric Layer at the Samoan Islands along Fractures Produced by Deformation of the Pacific Plate Near the Tonga Trench,” in Abstracts of EOS. Trans. AGU. Fall Meeting Supplement 83, T51D–02 (2002).

    Google Scholar 

  17. C. Doglioni, E. Carminati, and E. Bonatti, “Rift Asymmetry and Continental Uplift,” Tectonics 22(3), 1024–1029 (2003).

    Article  Google Scholar 

  18. C. Doglioni, D. H. Green, and F. Mongelli, “On the Shallow Origin of Hotspots and the Westward Drift of the Lithosphere,” in Plates, Plumes, and Paradigms (Geol. Soc. Amer. Spec. Paper, 2005), Vol. 388, pp. 735–749

  19. C. Doglioni, P. Harabaglia, S. Merlini, et al., “Orogens and Slabs vs. Their Direction of Subduction,” Earth Sci. Rev. 45, 167–208 (1999).

    Article  Google Scholar 

  20. J. Dunbar and D. T. Sandwell, “A Boudinage Model for Crossgrain Lineations,” EOS. Trans. AGU 69, 1429 (1988).

    Google Scholar 

  21. R. A. Duncan, “Age Progressive Volcanism in the New England Seamounts and the Opening of the Central Atlantic Ocean,” J. Geophys. Res. 89(B12), 9980–9990 (1984).

    Google Scholar 

  22. J. D. Fairhead and W. Marjorie, “Plate Tectonic Processes in the South Atlantic Ocean: Do We Need Deep Mantle Plumes?,” in Plates, Plumes, and Paradigms (Geol. Soc. Amer. Spec. Paper, 2005), Vol. 388, pp. 537–553.

  23. S. Faure, A. Tremblay, and J. Angelier, “State of Intraplate Stress and Tectonism of Northeastern North America since Cretaceous Times, with Particular Emphasis on the New England-Quebec Igneous Province,” Tectonophysics 255, 111–134 (1996).

    Article  Google Scholar 

  24. L. Fleitout, C. Dalloubeix, and C. Moriceau, “Small-Wavelength Geoid and Topography Anomalies in the South Atlantic Ocean: A Clue to New Hot-Spot Tracks and Lithospheric Deformation,” Geophys. Rev. Lett. 16, 637–640 (1989).

    Google Scholar 

  25. K. A. Foland, L. A. Gilbert, C. A. Sebring, and J.-F. Chen, “40Ar/39Ar Ages for Plutons of the Monteregian Hills, Quebec: Evidence for a Single Episode of Cretaceous Magmatism,” Bull. Geol. Soc. Amer. 97, 966–974 (1986).

    Article  Google Scholar 

  26. G. R. Foulger, “Plumes or Plate Tectonic Processes?,” Astr. Geophys. 43, 19–23 (2002).

    Google Scholar 

  27. G. R. Foulger, J. H. Natland, and D. L. Anderson, “Genesis of the Iceland Melt Anomaly by Plate Tectonic Processes,” in Plates, Plumes, and Paradigms (Geol. Soc. Amer. Spec. Paper, 2005), Vol. 388, pp. 595–625.

  28. K. D. Gans, D. S. Wilson, and K. C. Macdonald, “Pacific Plate Gravity Lineaments: Diffuse Extension or Thermal Contraction?,” Geochem. Geophys. Geosyst. 4, 1074 (2003).

    Article  Google Scholar 

  29. L. Ge’li, D. Aslanian, J. Olivet, et al., “Location of Louisville Hotspot and Origin of Hollister Ridge: Geophysical Constraints,” Earth Planet. Sci. Lett. 164, 31–40 (1998).

    Article  Google Scholar 

  30. D. H. Green, T. J. Falloon, S. M. Eggins, and G. M. Yaxley, “Primary Magmas and Mantle Temperatures,” Europ. J. Miner. 13, 437–451 (2001).

    Article  Google Scholar 

  31. H. R. Grunau, P. Lehner, M. R. Cleintuar, et al., “New Radiometric Ages and Seismic Data from Fuerteventura (Canary Islands), Maio (Cape Verde Islands), and Sao Tome (Gulf of Guinea),” in Progress in Geodynamics (North-Holland, New York, 1975), pp. 90–118.

    Google Scholar 

  32. W. F. Haxby and J. K. Weissel, “Evidence for Small-Scale Mantle Convection from SEASAT Altimeter Data,” J. Geophys. Res. 91, 3507–3520 (1986).

    Google Scholar 

  33. P. E. Janney, J. D. Macdougall, J. H. Natland, and M. A. Lynch, “Geochemical Evidence from the Pukapuka Volcanic Ridge System for a Shallow Enriched Mantle Domain Beneath the South Pacific Superswell,” Earth Planet. Sci. Lett. 181, 47–60 (2000).

    Article  Google Scholar 

  34. A. P. Koppers, J. P. Morgan, J. W. Morgan, and H. Staudigel, “Testing the Fixed Hotspot Hypothesis Using 40Ar/39Ar Age Progressions along Seamount Trails,” Earth Planet. Sci. Lett. 185, 237–252 (2001).

    Google Scholar 

  35. M. A. Lynch, “Linear Ridge Groups: Evidence for Tensional Cracking in the Pacific Plate,” J. Geophys. Res. 104, 29321–29333 (1999).

    Article  Google Scholar 

  36. B. D. Malamud and D. L. Turcotte, “How Many Plumes Are There?,” Earth Planet. Sci. Lett. 174, 113–124 (1999).

    Article  Google Scholar 

  37. J. Mammerickx, “The Foundation Seamounts; Tectonic Setting of a Newly Discovered Seamount Chain in the South Pacific,” Earth Planet. Sci. Lett. 113(3), 293–306 (1992).

    Article  Google Scholar 

  38. A. Marzoli, E. M. Piccirillo, P. R. Renne, et al., “The Cameroon Volcanic Line Revisited: Retrogenesis of Continental Basaltic Magmas from Lithospheric and Asthenospheric Mantle Sources,” J. Petrol. 41(1), 87–109 (2000).

    Article  Google Scholar 

  39. J. G. McHone, “Constraints on the Mantle Plume Model for Mesozoic Alkaline Intrusions in Northeastern North America,” Can. Miner. 34, 325–334 (1996).

    Google Scholar 

  40. M. McNutt and A. Bonneville, “A Shallow, Chemical Origin for the Marquesas Swell,” Geochem. Geophys. Geosyst. 1, 1999–2007 (2000).

    Article  Google Scholar 

  41. M. K. McNutt, D. W. Caress, J. Reynolds, et al., “Failure of Plume Theory to Explain Midplate Volcanism in the Southern Austral Islands,” Nature 389, 479–482 (1997).

    Article  Google Scholar 

  42. J. B. Meyers, B. R. Rosendahl, C. G. Harrison, and Z. Ding, “Deep-Imaging Seismic and Gravity Results from the Offshore Cameroon Volcanic Line and Speculations of African Hotlines,” Tectonophysics 284, 31–63 (1998).

    Article  Google Scholar 

  43. R. Montelli, G. Nolet, F. A. Dahlen, et al., Shu-Huei Hung Finite-Frequency Tomography Reveals a Variety of Plumes in the Mantle // www.sciencexpress.org/ December 4, 2003/Page 5/10.1126/science.1092485.

  44. W. J. Morgan, “Convective Plumes in the Lower Mantle,” Nature 230, 42–43 (1971).

    Article  Google Scholar 

  45. J. H. Natland, “The Progression of Volcanism in the Samoan Linear Volcanic Chain,” Am. J. Sci. 280A, 709–735 (1980).

    Google Scholar 

  46. J. H. Natland and E. L. Winterer, “Fissure Control on Volcanic Action in the Pacific Plates, Plumes, and Paradigms,” Geol. Soc. Amer. Spec. Paper 388, 687–710 (2005).

    Google Scholar 

  47. F. M. Richter and B. Parson, “The Interaction of Two Scales of Convection in the Mantle,” J. Geophys. Res. 80, 2529–2541 (1975).

    Article  Google Scholar 

  48. D. Sandwell and Yu. Fialko, “Warping and Cracking of the Pacific Plate by Thermal Contraction,” J. Geophys. Res. 109B, 10411–10420 (2004).

    Article  Google Scholar 

  49. D. T. Sandwell, E. L. Winterer, J. Mammerickx, et al., “Evidence for Diffuse Extension of the Pacific Plate from Pukapuka Ridges and Cross-Grain Gravity Anomalies,” J. Geophys. Res. 100, 15087–15099 (1995).

    Article  Google Scholar 

  50. N. H. Sleep, “Monteregian Hotspot Track: A Long-Lived Mantle Plume,” J. Geophys. Res. 95, 21983–21990 (1990).

    Google Scholar 

  51. A. D. Smith and C. Lewis, “The Planet beyond the Plume Hypothesis,” Earth Sci. Rev. 48, 135–182 (1999).

    Article  Google Scholar 

  52. J. A. Tarduno, R. A. Duncan, D. W. Scholl, et al., “The Emperor Seamounts: Southward Motion of the Hawaiian Hotspot Plume in Earth’s Mantle,” Science 301(5636), 1064–1069 (2003).

    Article  Google Scholar 

  53. D. L. Turcotte and E. R. Oxburgh, “Mid-Plate Tectonics,” Nature 244, 337–339 (1973).

    Article  Google Scholar 

  54. I. Vlastelic, L. Dosso, H. Guillou, et al., “Geochemistry of the Hollister Ridge: Relation with the Louisville Hotspot and the Pacific-Antarctic Ridge,” Earth Planet. Sci. Lett., No. 160, 777–793 (1998).

    Google Scholar 

  55. D. S. Weeraratne, D. W. Forsyth, and E. M. Parmentier, An Alternative Model for the Origin of Non-Hotspot Intraplate Volcanism in the Pacific // http://www.mantleplumes.org/Penrose/PenroseAbstracts.html (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Peive.

Additional information

Original Russian Text © A.A. Peive, 2007, published in Geotektonika, 2007, No. 4, pp. 30–47.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peive, A.A. Linear volcanic chains in oceans: Possible formation mechanisms. Geotecton. 41, 281–295 (2007). https://doi.org/10.1134/S0016852107040024

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852107040024

Keywords

Navigation