Skip to main content
Log in

Vitamin D in Nature: A Product of Synthesis and/or Degradation of Cell Membrane Components

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The review discusses the data on vitamin D accumulation in animals, plants, and other organisms. 7-Dehydrocholesterol (7-DHC) and ergosterol are considered to be the only true precursors of vitamin D, although even vitamin D2 (ergocalciferol) is not fully comparable to vitamin D3 (cholecalciferol) in regard to their functions. These precursors are converted by UV radiation into the corresponding D vitamins. There are a few published reports that this reaction can also occur in the dark or under blue light, which is unexpected and requires explanation. Another unexpected result is conversion of pro-vitamins D (7-DHC and ergosterol) into vitamin D3 and D2 via pre-vitamin D at low temperatures (<16°C) in the lichen Cladonia rangiferina. An extensive survey of literature data leads to the conclusion that vitamin D is synthesized from (1) 7-DHC via lanosterol (D3) in land animals; (2) 7-DHC via cycloartenol (D3) in plants; (3) ergosterol via lanosterol (D2) in fungi; and (4) 7-DHC or ergosterol (D3 or D2) in algae. Vitamin D primarily accumulates in organisms, in which it acts as a pro-hormone, e.g., land animals. It can also be found as a degradation product in many other species, in which spontaneous conversion of some membrane sterols upon UV irradiation leads to the formation of vitamins D3 or D2, even if they are not necessarily needed by the organism. Such products accumulate due to the absence of metabolizing enzymes, e.g., in algae, fungi, or lichens. Other organisms (e.g., zooplankton and fish) receive vitamins D with food; in this case, vitamins D do not seem to carry out biological functions; they are not metabolized but stored in cells. A few exceptions were found: the rainbow trout and at least four plant species that accumulate active hormone calcitriol (but not vitamin D) in relatively high amounts. As a result, these plants are very toxic for grazing animals (cause enzootic calcinosis). In connection with the proposal of some scientists to produce large quantities of vitamin D with the help of plants, the accumulation of calcitriol in some plants is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

7-DHC:

7-dehydrocholesterol

UV:

ultraviolet

vitamin D2 :

ergocalciferol

vitamin D3 :

cholecalciferol

References

  1. Holick, M. F. (2013) Vitamin D and health: evolution, biologic functions, and recommended dietary intakes for vitamin D, in Vitamin D. Physiology, Molecular Biology, and Clinical Applications (Holick, M. F., ed.) Humana Press Inc., New York, pp. 3–33.

    Google Scholar 

  2. Grant, W. B., Wimalawansa, S. J., Holick, M. F., Cannell, J. J., Pludowski, P., Lappe, J. M., Pittaway, M., and May, P. (2015) Emphasizing the health benefits of vitamin D for those with neurodevelopmental disorders and intellectual disabilities, Nutrients, 7, 1538–1564.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Göring, H., and Koshuchowa, S. (2015) Vitamin D-the sun hormone. Life in environmental mismatch, Biochemistry (Moscow), 80, 14–28.

    Article  CAS  Google Scholar 

  4. Chen, T. C., Lu, Z., and Holick, M. F. (2013) Photobiology of vitamin D, in Vitamin D. Physiology, Molecular Biology, and Clinical Applications (Holick, M. F., ed.) Human Press Inc., New York, pp. 35–60.

    Google Scholar 

  5. Kozlov, A. I. (2011) About genes and sun, fishs and lichens, cows and reindeers, Biol. Med. Nauki, 140–147.

    Google Scholar 

  6. Björn, L. O., and Wang, T. (2001) Is provitamin D a UV-B receptor in plants? in Responses of Plants to UV-B Radiation. Advances in Vegetation Science (Rozema, J., Manetas, Y., and Björn, L. O., eds.) Vol. 18, Springer, Dordrecht.

  7. Phillips, K. M., Horst, R. L., Koszewski, N. J., and Simon, R. R. (2012) Vitamin D4 in mushrooms, PLoS One, 7, e40702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. De Luca, H. F., Weller, M., Blunt, J. W., and Neville, P. F. (1968) Synthesis, biological activity, and metabolism of 22,23-3H vitamin D4, Arch. Biochem. Biophys., 124, 122–128.

    Article  PubMed  Google Scholar 

  9. Zmijewski, M. A., Li, W., Chen, J., Kim, T. K., Zjawiony, J. K., Sweatman, T. W., Miller, D. D., and Slominski, A. T. (2011) Synthesis and photochemical transformation of 3β,21-dihydroxypregna-5,7-dien-20-one to novel secosteroids that show anti-melanoma activity, Steroids, 76, 193–203.

    Article  PubMed  CAS  Google Scholar 

  10. Holick, M. F., McLaughlin, J. A., Clarck, J. A., Holick, S. A., Potts, J. T., Jr., Anderson, R. R., Blanck, I. H., Parrish, J. A., and Elias, P. (1980) Photosynthesis of previtamin D3 in human skin and the physiologic consequences, Science, 210, 203–205.

    Article  PubMed  CAS  Google Scholar 

  11. Holick, M. F. (1989) Phylogenetic and evolutionary aspects of vitamin D from phytoplankton to humans, in Vertebrate Endocrinology: Fundamentals and Biomedical Implications (Pank, P. K. T., and Schreibman, M. P., eds.) Academic Press, Orlando, FL, pp. 7–43.

    Google Scholar 

  12. Tian, X. Q., Chen, T. C., Matsuoka, L. Y., Wortsman, J., and Holick, M. F. (1993) Kinetic and thermodynamic studies of the conversion of previtamin D3 to vitamin D3 in human skin, J. Biol. Chem., 268, 14888–14892.

    PubMed  CAS  Google Scholar 

  13. Holick, M. F., Tian, X. Q., and Allen, M. (1995) Evolutionary importance for the membrane enhancement of the production of vitamin D3 in the skin of poikilothermic animals, Proc. Natl. Acad. Sci. USA, 92, 3124–3126.

    Article  PubMed  CAS  Google Scholar 

  14. Velluz, L., Amiard, G., and Petit, A. (1949) Le precalcifer-ol-ses relations d’equilibre avc le calciferol, Bull. Soc. Chim. Fr., 16, 501–508.

    Google Scholar 

  15. Havinga, E. (1973) Vitamin D, example and challenge, Experientia, 29, 1181–1193.

    Article  PubMed  CAS  Google Scholar 

  16. Curino, A., Skliar, M., and Boland, R. (1998) Identification of 7-dehydrocholesterol, vitamin D3, 25(OH)-vitamin D3 and 1,25(OH)2-vitamin D3 in Solanum glaucophyllum cultures grown in absence of light, Biochim. Biophys. Acta, 1425, 485–492.

    Article  PubMed  CAS  Google Scholar 

  17. Curino, A., Milanesi, L., Benasatti, S., Skliar, M., and Boland, R. (2001) Effect of culture conditions on the synthesis of vitamin D3 metabolites in Solanum glaucophyllum grown in vitro, Phytochemistry, 58, 81–89.

    Article  PubMed  CAS  Google Scholar 

  18. Jäpelt, R. B., Silvestro, D., Smedsgaard, J., Jensen, P. E., and Jakobsen, J. (2013) Quantification of vitamin D3 and its hydroxylated metabolites in waxy leaf nightshade (Solanum glaucophyllum Desf.), tomato (Solanum lycopersicum L.) and bell pepper (Capsicum annuum L.), Food Chem., 138, 1206–1211.

    Article  PubMed  CAS  Google Scholar 

  19. Jäpelt, R. B., and Jacobsen, J. (2013) Vitamin D in plants. A review of occurence, analysis, and biosynthesis, Front. Plant Sci., 4,136.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pierens, S. L., and Fraser, D. R. (2015) The origin and metabolism of vitamin D in rainbow trout, J. Steroid Biochem. Mol. Biol., 145, 58–64.

    Article  PubMed  CAS  Google Scholar 

  21. Holick, M. F. (1995) Environmental factors that influence the cutaneous production of vitamin D, Am. J. Clin. Nutr., 61, 638S–645S.

    Article  Google Scholar 

  22. Chubarova, N., and Zdanova, Y. (2013) Ultraviolet resources over Northern Eurasia, J. Photochem. Photobiol. B, 127, 38–51.

    Article  PubMed  CAS  Google Scholar 

  23. Grigalavicius, M., Juzeniene, A., Baturaite, Z., Dahlback, A., and Moan, J. (2013) Biologically efficient solar radiation: vitamin D production and induction of cutaneous malignant melanoma, Dermatoendocrinology, 5, 150–158.

    Article  CAS  Google Scholar 

  24. Holick, M. F., MacLaughlin, J. A., Clark, M. B., Holick, S. A., Potts, J. T., Jr., Anderson, R. R., Blank, I. H., Parrish, J. A., and Elias, P. (1980) Photosynthesis of previtamin D3 in human skin and the physiologic consequences, Science, 210, 203–205.

    Article  PubMed  CAS  Google Scholar 

  25. Tian, X. Q., Chen, T. C., Lu, Z., Shao, Q., and Holick, M. F. (1994) Characterization of the translocation process of vitamin D3 from the skin into the circulation, Endocrinology, 135, 655–661.

    Article  PubMed  CAS  Google Scholar 

  26. Tian, X. Q., and Holick, M. F. (1995) Catalyzed thermal isomerization between previtamin D3 via β-cyclodextrin complexation, J. Biol. Chem., 270, 8706–8711.

    Article  PubMed  CAS  Google Scholar 

  27. Björn, L. O., and Wang, T. (2000) Vitamin D in an ecological context, Int. J. Circumpolar Health, 59, 26–32.

    PubMed  Google Scholar 

  28. Rosenstreich, S. J., Rich, C., and Volwiler, W. (1971) Deposition in and release of vitamin D3 from body fat: evidence for a storage site in the rat, J. Clin. Invest., 50, 679–687.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Abbas, M. A. (2017) Physiological functions of vitamin D in adipose tissue, J. Steroid Biochem. Mol. Biol., 165, 369–381.

    Article  PubMed  CAS  Google Scholar 

  30. Didriksen, A., Burild, A., Jakobsen, J., Fuskevag, J. M., and Jorde, R. (2015) Vitamin D3 increases in abdominal subcutaneous fat tissue after supplementation with vitamin D3, Eur. J. Endocrinol., 172, 235–241.

    Article  PubMed  CAS  Google Scholar 

  31. Wacker, M., and Holick, M. F. (2013) Sunlight and vitamin D: a global perspective for health, Dermatoendocrinology, 5, 51–108.

    Article  CAS  Google Scholar 

  32. Sonawane, P. D., Pollier, J., Panda, S., Szymanski, J., Massalha, H., Yona, M., Unger, T., Malitsky, S., Arendt, P., Pauwels, L., Almekias-Siegl, E., Rogachev, I., Meir, S., Cardenas, P. D., Masri, A., Petrikov, M., Schaller, H., Schaffer, A. A., Kamble, A., Giri, A. P., Goossens, A., and Aharoni, A. (2016) Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism, Nat. Plants, 3, 16205.

    Article  PubMed  CAS  Google Scholar 

  33. Cardenas, P. D., Sonawane, P. D., Pollier, J., Vanden Bossche, R., Dewangan, V., Weithorn, E., Tal, L., Meir, S., Rogachev, I., Malitsky, S., Giri, A. P., Goossens, A., Burdman, S., and Aharoni, A. (2016) GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway, Nat. Commun., 7, 10654.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Horst, R. L., Reinhardt, T. A., Russel, J. R., and Napoli, J. L. (1984) The isolation of vitamin D2 and vitamin D3 from Medicago sativa (alfalfa plant), Arch. Biochem. Biophys., 231, 67–71.

    Article  PubMed  CAS  Google Scholar 

  35. Siegel, M. C., Latch, G. C. M., and Johnson, V. C. (1987) Fungal endophytes of grasses, Ann. Rev. Phytopathol., 25, 293–315.

    Article  Google Scholar 

  36. Clay, K. (1990) Fungal endophytes of grasses, Ann. Rev. Ecol. Syst., 21, 275–297.

    Article  Google Scholar 

  37. Gessner, M. O., and Schmitt, A. J. (1996) Use of solid-phase extraction to determine ergosterol concentrations in plant tissue colonized by fungi, Appl. Environ. Microbiol., 62, 415–419.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Fitzpatrick, T. B., Basset, G. J. C., Borel, P., Carrari, F., DellaPenna, D., Fraser, D. P., Hellmann, H., Osorio, S., Rothan, C., Valpuesta, V., Caris-Vyrat, C., and Ferni, A. R. (2012) Vitamin D deficiencies in humans: can plant science help? Plant Cell, 24, 395–414.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Whitaker, B. D. (1988) Changes in the steryl lipid content and composition of tomato fruit during ripening, Phytochemistry, 27, 3411–3416.

    Article  CAS  Google Scholar 

  40. Whitaker, B. D. (1991) Changes in lipids of tomato fruit stored at chilling and non-chilling temperatures, Phytochemistry, 30, 757–761.

    Article  CAS  Google Scholar 

  41. Molreau, R. A., Whitaker, B. D., and Hicks, K. B. (2002) Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses, Prog. Lipid Res., 41, 457–500.

    Article  Google Scholar 

  42. Zygadlo, J. A. (1993) A comparative study of sterols in oil seeds of Solanum species, Phytochemistry, 35, 163–167.

    Article  Google Scholar 

  43. Jäpelt, R. B., Silvestro, D., Smedsgaard, J., Jensen, P. E., and Jakobsen, J. (2011) LC-MS/MS with atmospheric pressure chemical ionization to study the effect of UV treatment on the formation of vitamin D3 and sterols in plants, Food Chem., 129, 217–225.

    Article  CAS  Google Scholar 

  44. Frega, N., Bocci, F., Conte, L. S., and Testa, F. (1991) Chemical composition of tobacco seeds (Nicotiana tabacum L.), JAOCS, 68, 29–33.

    Article  CAS  Google Scholar 

  45. Esparza, M. S., Vega, M., and Boland, R. L. (1982) Synthesis and composition of vitamin D metabolites in Solanum malacoxylon, Biochim. Biophys. Acta, 719, 633–640.

    Article  PubMed  CAS  Google Scholar 

  46. Aburjai, T., Al-Khalil, S., and Abuirjeie, M. (1998) Vitamin D3 and its metabolites in tomato, potato, egg plant and zucchini leaves, Phytochemistry, 49, 2497–2499.

    Article  CAS  Google Scholar 

  47. Prema, T. P., and Raghuramulu, N. (1996) Vitamin D3 and its metabolites in the tomato plant, Phytochemistry, 42, 617–620.

    Article  PubMed  CAS  Google Scholar 

  48. Weissenberg, M., Levy, A., and Wasserman, R. H. (1989) Distribution of calcitriol activity in Solanum glaucophyllum plants and cell cultures, Phytochemistry, 28, 795–798.

    Article  CAS  Google Scholar 

  49. Sawai, S., Ohyama, K., Yasumoto, S., Seki, H., Sakuma, T., Yamamoto, T., Takebayashi, Y., Kojima, M., Sakakibara, H., Aoki, T., Muranaka, T., Saito, K., and Umemoto, N. (2014) Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato, Plant Cell, 26, 3763–3774.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Wasserman, R. H., Corradino, R. A., and Krook, L. P. (1975) Cestrum diurnum: a domestic plant with 1,25-dihydroxycholecalciferol-like activity, Biochem. Biophys. Res. Commun., 62, 85–91.

    Article  PubMed  CAS  Google Scholar 

  51. Dirksen, G., Plank, P., Spiess, A., Hänichen, T., and Dämmrich, K. (1970) Uber eine enzootische Kalzinose beim Rind. 1. Klinische Beobachtungen und Untersuchungen, Dtsch. Tierärztl. Wochenschr., 77, 321–337.

    PubMed  CAS  Google Scholar 

  52. Mello, J. R. (2003) Calcinosis-calcinogenetic plants, Toxicon, 41, 1–12.

    Article  PubMed  CAS  Google Scholar 

  53. Hughes, M. R., McCain, T. A., Chang, S. Y., Haussler, M. R., Villareale, M., and Wasserman, R. H. (1977) Presence of 1,25-dihydroxyvitamin D3-glycoside in the calcinogenic plant Cestrum diurnum, Nature, 268, 347–349.

    Article  PubMed  CAS  Google Scholar 

  54. Bensch, C., and Steng, G. (1999) Kalzinose beim Schafein Fallbericht, Tierärztl. Prax. Ausg. G Grosstiere Nutztiere, 27, 83–86.

    Google Scholar 

  55. Dirksen, G., Steer, K., and Herrmanns, W. (2003) Enzootische Kalzinose beim Schaf nach Verzehr von Goldhafer (Trisetum flavescens), Dtsch. Tierärztl. Wochenschr., 110, 475–483.

    PubMed  CAS  Google Scholar 

  56. Lichtenegger, E., Kutschera, L., Köhler, H., and Libiseller, R. (1979) Zur Kalzinose der Rinder in Österreich. VIII. Untersuchungen über die Zusammenhange zwischen Kalzinose, Klima, Boden und Düngung in Kals in Osttirol, Zentralbl. Veterinärmed. A, 26, 290–308.

    Article  PubMed  CAS  Google Scholar 

  57. Ikekawa, N. (1968) Sterol compositions in some green algae and brown algae, Steroids, 12, 41–48.

    Article  PubMed  CAS  Google Scholar 

  58. Fleury, D. G., Pereira, M. V. G., DeSilva, J. R. P., Kaisin, M., Teixeira, V. L., and Kelecom, A. (1994) Sterols from Brazilian marine brown algae, Phytochemistry, 37, 1447–1449.

    Article  CAS  Google Scholar 

  59. Seckbach, J., and Ikan, R. (1972) Sterols and chloroplast structure of Cyanidium caldarium, Plant Physiol., 49, 457–459.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Holick, M. F. (2007) Vitamin D deficiency, N. Engl. J. Med., 357, 266–281.

    Article  PubMed  CAS  Google Scholar 

  61. Teichmann, A., Dutta, P. C., Staffas, A., and Jagerstad, M. (2007) Sterol and vitamin D2 concentrations in cultivated and wild grown mushrooms: effects of UV irradiation, LWT-Food Sci. Technol., 40, 815–822.

    Article  CAS  Google Scholar 

  62. Jasinghe, V. J., Perera, C. O., and Barlow, P. J. (2006) Vitamin D2 from irradiated mushrooms significantly increases femur bone mineral density in rats, J. Toxicol. Environ. Health A, 69, 1979–1985.

    Article  PubMed  CAS  Google Scholar 

  63. Koyyalamudi, S. R., Jeong, S. C., Song, C. H., Cho, K. Y., and Pang, G. (2009) Vitamin D2 formation and bioavailability from Agaricus bisporus button mushrooms treated with ultraviolet irradiation, J. Agric. Food Chem., 57, 3351–3355.

    Article  PubMed  CAS  Google Scholar 

  64. Wright, J. L. (1979) The occurrence of ergosterol and (22E724R)-24-ethylcholesta-5,7,22-trien-3β-ol in the unicellular chlorophyte Dunaliella tertiolecta, Can. J. Chem., 57, 2569–2571.

    Article  CAS  Google Scholar 

  65. Miller, M. B., Haubrich, B. A., Wang, Q., Snell, W. J., and Nes, W. D. (2012) Evolutionarily conserved Δ25(27)-olefin ergosterol biosynthesis pathway in the alga Chlamydomonas reinhardtii, J. Lipid Res., 53, 1636–1645.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Brumfield, R. M., Laborde, S. M., and Moroney, J. V. (2017) A model for the ergosterol biosynthetic pathway in Chlamydomonas reinhardtii, Eur. J. Phytol., 52, 64–74.

    CAS  Google Scholar 

  67. Patterson, G. W. (1969) Sterols of Chlorella-III. Species containing ergosterol, Comp. Biochem. Physiol., 31, 391–394.

    Article  CAS  Google Scholar 

  68. Patterson, G. W. (1971) The distribution of sterols in algae, Lipids, 6, 120–127.

    Article  CAS  Google Scholar 

  69. Kozlov, A., Khabarova, Y., Vershubsky, G., Ateeva, Y., and Ryzhaenkov, V. (2014) Vitamin D status of northern indigenous people of Russia leading traditional and “modernized” way of life, Int. J. Circumpolar Health, 73, 26038.

    Article  PubMed  Google Scholar 

  70. Wang, T., Bengtsson, G., Karnefelt, I., and Björn, L. O. (2001) Provitamins and vitamins D2 and D3 in Cladina spp. over a latitudinal gradient: possible correlation with UV levels, J. Photochem. Photobiol. B, 62, 118–122.

    Article  PubMed  CAS  Google Scholar 

  71. Hsieh, P. H., Hallmark, B., Watkins, J., Karafet, T. M., Osipova, L. P., Gutenkunst, R. N., and Hammer, M. F. (2017) Exome sequencing provides evidence of polygenic adaption to a fat-rich animal diet in indigenous siberian populations, Mol. Biol. Evol., 34, 2913–2926.

    Article  PubMed  CAS  Google Scholar 

  72. Dammann, P. (2017) Slow aging in mammals-lessons from African mole-rats and bats, Semin. Cell Dev. Biol., 70, 154–163.

    Article  PubMed  Google Scholar 

  73. Black, L. J., Lucas, R. M., Sherriff, J. L., Björn, L. O., and Bornman, J. F. (2017) In pursuit of vitamin D in plants, Nutrients, 9, E136.

    Article  PubMed  CAS  Google Scholar 

  74. Fisk, C. M., Theobald, H. E., and Sanders, T. A. (2012) Fortified malted milk drinks containing low-dose ergocalciferol and cholecalciferol do not differ in their capacity to raise serum 25-hydroxyvitamin D concentrations in healthy men and women not exposed to UV-B, J. Nutr., 142, 1286–1290.

    Article  PubMed  CAS  Google Scholar 

  75. Itkonen, S. T., Skaffari, E., Saaristo, P., Saarnio, E. M., Erkkola, M., Jakobsen, J., Cashman, K. D., and Lamberg-Allardt, C. (2016) Effects of vitamin D2-fortified bread v. supplementation with vitamin D2 or D3 on serum 25-hydroxyvitamin D metabolites: an 8-week randomised-controlled trial in young adult Finnish women, Br. J. Nutr., 115, 1232–1239.

    Article  PubMed  CAS  Google Scholar 

  76. Tripkovic, L., Lambert, H., Hart, K., Smith, C. P., Bucca, G., Penson, S., Chope, G., Hypponen, E., Berry, J., Vieth, R., and Lanham-New, S. (2012) Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis, Am. J. Clin. Nutr., 95, 1357–1364.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Biancuzzo, R. M., Young, A., Bibuld, D., Cai, M. H., Winter, M. R., Klein, E. K., Ameri, A., Reitz, R., Salameh, W., Chen, T. C., and Holick, M. F. (2010) Fortification of orange juice with vitamin D2 or vitamin D3 is as effective as an oral supplement in maintaining vitamin D status in adults, Am. J. Clin. Nutr., 91, 1621–1626.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Lanham-New, S., Vieth, R., and Heaney, R. (2010) Vitamin D2 and vitamin D3 comparisons: fundamentally flawed study methodology, Am. J. Clin. Nutr., 92,999.

    Article  PubMed  CAS  Google Scholar 

  79. Trang, H. M., Cole, D. E., Rubin, L. A., Pierratos, A., Siu, S., and Vieth, R. (1998) Evidence that vitamin D3 increases serum 25-hydroxyvitamin D more efficiently than does vitamin D2, Am. J. Clin. Nutr., 68, 854–858.

    Article  PubMed  CAS  Google Scholar 

  80. Houghton, L. A., and Vieth, R. (2006) The case against ergocalciferol (vitamin D2) as a vitamin supplement, Am. J. Clin. Nutr., 84, 694–697.

    Article  PubMed  CAS  Google Scholar 

  81. Jones, K. S., Assar, S., Harnpanich, D., Bouillon, R., Lambrechts, D., Prentice, A., and Schoenmakers, I. (2014) 25(OH)D2 half-life is shorter than 25(OH)D3 half-life and is influenced by DBP concentration and genotype, J. Clin. Endocrinol. Metab., 99, 3373–3381.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Göring.

Additional information

Russian Text © H. Göring, 2018, published in Biokhimiya, 2018, Vol. 83, No. 11, pp. 1663–1672.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Göring, H. Vitamin D in Nature: A Product of Synthesis and/or Degradation of Cell Membrane Components. Biochemistry Moscow 83, 1350–1357 (2018). https://doi.org/10.1134/S0006297918110056

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918110056

Keywords

Navigation