Paper
10 April 2013 Vibration damping of a cantilever beam utilizing fluidic flexible matrix composites
Bin Zhu, Christopher D. Rahn, Charles E. Bakis
Author Affiliations +
Abstract
This paper presents a novel approach for damping the vibration of a cantilever beam by bonding a fluidic flexible matrix composite (F2MC) tube to the beam and using the strain induced fluid pumping. The transverse beam vibration couples with the F2MC tube strain to generate flow into an external accumulator through an orifice that dissipates energy. The energy dissipation is especially significant at the resonances of the cantilever beam, where the beam vibrates with greatest amplitude and induces the most fluid flow from the F2MC tube. As a result, the resonant peaks can be greatly reduced due to the damping introduced by the flow through the orifice. An analytical model is developed based on Euler-Bernoulli beam theory and Lekhnitskii’s solution for anisotropic layered tubes. In order to maximize the vibration reduction, a parametric study of the F2MC tube is performed. The analysis results show that the resonant peaks can be provided with a damping ratio of up to 13.2% by tailoring the fiber angle of the F2MC tube, the bonding locations of the tube, and the orifice flow coefficient.
© (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Bin Zhu, Christopher D. Rahn, and Charles E. Bakis "Vibration damping of a cantilever beam utilizing fluidic flexible matrix composites", Proc. SPIE 8688, Active and Passive Smart Structures and Integrated Systems 2013, 86880T (10 April 2013); https://doi.org/10.1117/12.2014763
Lens.org Logo
CITATIONS
Cited by 4 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Cadmium

Composites

Protactinium

Solids

Wind energy

Fourier transforms

Structured optical fibers

Back to Top