Skip to main content
Log in

Intraspecies and Interspecies Comparison of the Compressive Properties of the Medial Meniscus

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Quantification of the compressive material properties of the meniscus is of paramount importance, creating a “gold-standard” reference for future research. The purpose of this study was to determine compressive properties in six animal models (baboon, bovine, canine, human, lapine, and porcine) at six topographical locations. It was hypothesized that topographical variation of the compressive properties would be found in each animal model and that interspecies variations would also be exhibited. To test these hypotheses, creep and recovery indentation experiments were performed on the meniscus using a creep indentation apparatus and analyzed via a finite element optimization method to determine the material properties. Results show significant intraspecies and interspecies variation in the compressive properties among the six topographical locations, with the moduli exhibiting the highest values in the anterior portion. For example, the anterior location of the human meniscus has an aggregate modulus of 160 ± 40 kPa, whereas the central and posterior portions exhibit aggregate moduli of 100 ± 30 kPa. Interspecies comparison of the aggregate moduli identifies the lapine anterior location having the highest value (450 ± 120 kPa) and the human posterior location having the lowest (100 ± 30 kPa). These baseline values of compressive properties will be of help in future meniscal repair efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Adams, M. E., and H. Muir. The glycosaminoglycans of canine menisci. Biochem. J. 197:385–389, 1981.

    Google Scholar 

  2. Anderson, D. R., S. L. Woo, M. K. Kwan, and D. H. Gershuni. Viscoelastic shear properties of the equine medial meniscus. J. Orthop. Res. 9:550–558, 1991.

    Google Scholar 

  3. Arnoczky, S.P., C.A. McDevitt, M.B. Schmidt, V.C. Mow, and R. F. Warren. The effect of cryopreservation on canine menisci: A biochemical, morphologic, and biomechanical evaluation. J. Orthop. Res. 6:1–12, 1988.

    Google Scholar 

  4. Arnoczky, S. P., R. F. Warren, and C. A. McDevitt. Meniscal replacement using a cryopreserved allograft. An experimental study in the dog. Clin. Orthop. 252:121–128, 1990.

    Google Scholar 

  5. Athanasiou, K. A., A. Agarwal, and F. J. Dzida. Comparative study of the intrinsic mechanical properties of the human acetabular and femoral head cartilage. J. Orthop. Res. 12:340–349, 1994.

    Google Scholar 

  6. Athanasiou, K. A., A. Agarwal, A. Muffoletto, F. J. Dzida, G. Constantinides, and M. Clem. Biomechanical properties of hip cartilage in experimental animal models. Clin. Orthop. 316:254–266, 1995.

    Google Scholar 

  7. De Boer, H. H., and J. Koudstaal. The fate of meniscus cartilage after transplantation of cryopreserved nontissue-antigen-matched allograft. A case report. Clin. Orthop. 266:145–151, 1991.

    Google Scholar 

  8. DeHaven, K. E. Meniscus repair. Am. J. Sports Med. 27:242–250, 1999.

    Google Scholar 

  9. Elliott, D. M., F. Guilak, T. P. Vail, J. Y. Wang, and L. A. Setton. Tensile properties of articular cartilage are altered by meniscectomy in a canine model of osteoarthritis. J. Orthop. Res. 17:503–508, 1999.

    Google Scholar 

  10. Fithian, D. C., M. A. Kelly, and V. C. Mow. Material properties and structure-function relationships in the menisci. Clin. Orthop. 252:19–31, 1990.

    PubMed  Google Scholar 

  11. Goertzen, D., J. Gillquist, and K. Messner. Tensile strength of the tibial meniscal attachments in the rabbit. J. Biomed. Mater. Res. 30:125–128, 1996.

    Google Scholar 

  12. Goertzen, D. J., D. R. Budney, and J. G. Cinats. Methodology and apparatus to determine material properties of the knee joint meniscus. Med. Eng. Phys. 19:412–419, 1997.

    Google Scholar 

  13. Hacker, S. A., S. L.-Y. Woo, J. S. Wayne, and M. K. Kwan. Compressive properties of the human meniscus. Trans. Orthop. Res. Soc. 17:627, 1992.

    Google Scholar 

  14. Joshi, M. D., J. K. Suh, T. Marui, and S. L. Woo. Interspecies variation of compressive biomechanical properties of the meniscus. J. Biomed. Mater. Res. 29:823–828, 1995.

    Google Scholar 

  15. Klompmaker, J., H. W. Jansen, R. P. Veth, H. K. Nielsen, J. H. de Groot, A. J. Pennings, and R. Kuijer. Meniscal repair by fibrocartilage? An experimental study in the dog. J. Orthop. Res. 10:359–370, 1992.

    Google Scholar 

  16. Lechner, K., M. L. Hull, and S. M. Howell. Is the circumferential tensile modulus within a human medial meniscus affected by the test sample location and cross-sectional area? J. Orthop. Res. 18:945–951, 2000.

    Google Scholar 

  17. Leslie, B. W., D. L. Gardner, J. A. McGeough, and R. S. Moran. Anisotropic response of the human knee joint meniscus to unconfined compression. Proc. Inst. Mech. Eng. [H]. 214:631–635, 2000.

    Google Scholar 

  18. Mak, A. F., W. M. Lai, and V. C. Mow. Biphasic indentation of articular cartilage-I. Theoretical analysis. J. Biomech. 20:703–714, 1987.

    Google Scholar 

  19. McAndrews, P. T., and S. P. Arnoczky. Meniscal repair enhancement techniques. Clin. Sports Med. 15:499–510, 1996.

    Google Scholar 

  20. Mow, V.C., M.C. Gibbs, W.M. Lai, W.B. Zhu, and K.A. Athanasiou. Biphasic indentation of articular cartilage-II. A numerical algorithm and an experimental study. J. Biomech. 22:853–861, 1989.

    Google Scholar 

  21. Mow, V. C., S. C. Kuei, W. M. Lai, and C. G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J. Biomech. Eng. 102:73–84, 1980.

    Google Scholar 

  22. Mow, V.C., A. Ratcliffe, K.Y. Chern, and M.A. Kelly. “Structure and function relationships of the menisci of the knee.” In: Knee Meniscus: Basic and Clinical Foundations, edited by V. C. Mow, S. P. Arnoczky, and D. W. Jackson. New York: Raven, 1992, pp. 37–57.

    Google Scholar 

  23. Noble, J. Lesions of the menisci. Autopsy incidence in adults less than fifty-five years old. J. Bone Joint Surg. Am. Vol. 59(4):480–483, 1977.

    Google Scholar 

  24. Proctor, C. S., M. B. Schmidt, R. R. Whipple, M. A. Kelly, and V. C. Mow. Material properties of the normal medial bovine meniscus. J. Orthop. Res. 7:771–782, 1989.

    Google Scholar 

  25. Skaggs, D. L., W. H. Warden, and V. C. Mow. Radial tie fibers influence the tensile properties of the bovine medial meniscus. J. Orthop. Res. 12:176–185, 1994.

    Google Scholar 

  26. Stone, K. R., W. G. Rodkey, R. J. Webber, L. McKinney, and J. R. Steadman. Future directions. Collagen-based prostheses for meniscal regeneration. Clin. Orthop. 252:129–135, 1990.

    Google Scholar 

  27. Tissakht, M., and A. M. Ahmed. Tensile stress-strain characteristics of the human meniscal material. J. Biomech. 28:411–422, 1995.

    Google Scholar 

  28. Zhu, W., K. Y. Chern, and V. C. Mow. Anisotropic viscoelastic shear properties of bovine meniscus. Clin. Orthop. 306:34–45, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sweigart, M.A., Zhu, C.F., Burt, D.M. et al. Intraspecies and Interspecies Comparison of the Compressive Properties of the Medial Meniscus. Annals of Biomedical Engineering 32, 1569–1579 (2004). https://doi.org/10.1114/B:ABME.0000049040.70767.5c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/B:ABME.0000049040.70767.5c

Navigation