Skip to main content
Log in

A Strain Device Imposing Dynamic and Uniform Equi-Biaxial Strain to Cultured Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The objective of this study is to design a new apparatus to allow the control of the magnitude and frequency of dynamic stretch applied uniformly to cells cultured on a silicon elastic membrane. The apparatus is designed to produce equi-biaxial dynamic stretches with area changes ranging from 0% to 55% and frequencies ranging from 0 to 2 Hz. Homogeneous finite strain analysis using triangles of markers was performed to compute the symmetric two-dimensional Lagrangian strain tensor on the membrane. Measurements of strain in both static and dynamic conditions showed that the shear component of the strain tensor (Erc) was near zero, and that there was no significant difference between radial (Err) and circumferential (Ecc) components, indicating the attainment of equi-biaxial strain. Bovine aortic endothelial cells were transiently transfected with a chimeric construct in which the luciferase reporter is driven by TPA-responsive elements (TRE). The transfected cells cultured on the membrane were stretched. The luciferase activity increased significantly only when the cells were stretched by 15% or more in area. Cells in different locations of the membrane showed similar induction of luciferase activities, confirming that strain is uniform and equi-biaxial across the membrane. © 1998 Biomedical Engineering Society.

PAC98: 8780+s, 8745-k, 8722-q

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Banes, A. J., J. Gilbert, D. Taylor, and O. Monbureau. A new vacuum-operated stress-providing instrument that applies static or variable duration cyclic tension or compression to cells in vitro. J. Cell. Sci. 75:35-42, 1985.

    Google Scholar 

  2. Brighton, C. T., B. Strafford, S. B. Gross, D. F. Leatherwood, J. L. Williams, and S. R. Pollack. The proliferative and synthetic response of isolated calvarial bone cells of rats to cyclic biaxial mechanical strain. J. Bone Joint Surg. 73:320-331, 1991.

    Google Scholar 

  3. Buck, R. C. Reorientation response of cells to repeated stretch and recoil of the substratum. Exp. Cell Res. 127:470- 474, 1980.

    Google Scholar 

  4. Buckley, M. J., A. J. Banes, L. G. Levin, B. E. Sumpio, M. Sato, R. Jordan, J. Gilbert, G. W. Link, and R. Tran Son Tay. Osteoblasts increase their rate of division and align in response to cyclic, mechanical tension in vitro. Bone Miner. 4:225-236, 1988.

    Google Scholar 

  5. Dartsch, P. C., H. Hammerle, and E. Betz. Orientation of cultured arterial smooth muscle cells growing on cyclically stretched substrates. Acta. Anat. 125:108-113, 1986.

    Google Scholar 

  6. Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75:519-560, 1995.

    Google Scholar 

  7. De Witt, M. T., C. J. Handley, B. W. Oakes, and D. A. Lowther. In vitro response of chondrocytes to mechanical loading. The effect of short term mechanical tension. Connective Tissue Res. 12:97-109, 1984.

    Google Scholar 

  8. Gilbert, J. A., P. S. Weinhold, A. J. Banes, G. W. Link, and G. L. Jones. Strain profiles for circular cell culture plates containing flexible surfaces employed to mechanically deform cells in vitro. J. Biomech. 27:1169-1177, 1994.

    Google Scholar 

  9. Gray, M. L., A. M. Pizzanelli, A. J. Grodzinsky, and R. C. Lee. Mechanical and physicochemical determinants of the chondrocyte biosynthetic response. J. Orthop. Res. 6:777- 792, 1988.

    Google Scholar 

  10. Hung, C. T., and J. L. Williams. A method for inducing equi-biaxial and uniform strains in elastomeric membranes used as cell substrates. J. Biomech. 27:227-232, 1994.

    Google Scholar 

  11. Ives, C. L., S. G. Eskin, and L. V. Mcintire. Mechanical effects on endothelial cell morphology: In vitro assessment. In Vitro Cell. Dev. Biol. 22:500-507, 1986.

    Google Scholar 

  12. Kenneth, A. B., E. J. Macarak, and L. E. Thibault. Strain measurements in cultured vascular smooth muscle cells subjected to mechanical deformation. Ann. Biomed. Eng. 22:14- 22, 1994.

    Google Scholar 

  13. Komuro, I., S. Kudo, T. Yamazaki, Y. Zou, and I. Shiojima. Mechanical stretch activates the stress-activated protein kinases in cardiac myocytes. FASEB J. 10:631-635, 1996.

    Google Scholar 

  14. Lee, A. A., T. Delhaas, L. K. Waldman, D. A. Mackenna, F. J. Villarreal, and A. McCulloch. Equibiaxial strains in cultured cells. Am. J. Physiol. 40(4):C1400-C1408, 1996.

    Google Scholar 

  15. Mills, I., C. R. Cohen, K. Kamal, G. Li, T. Shin, W. Du, and B. E. Sumpio. Strain activation of bovine aortic smooth muscle cell proliferation and alignment: Study of strain dependency and the role of protein kinase A and C signaling pathways. J. Cell Physiol. 170:228-234, 1997.

    Google Scholar 

  16. Mountcastle, V. B. Medical Physiology. St. Louis: Mosby, 1974, pp. 952-960.

    Google Scholar 

  17. Neidlinger-Wilke, C., H.-J. Wilke, and L. Claes. Cyclic stretching of human osteoblasts affects proliferation and metabolism: A new experimental method and its application. J. Orthop. Res. 12:70-78, 1994.

    Google Scholar 

  18. Nerem, R. M.. Hemodynamic and the vascular endothelium. J. Biomed. Eng. 115:510-514, 1993.

    Google Scholar 

  19. O’Rourke, M. F., R. Kelly, and A. Arolio. The Arterial Pulse. Philadelphia: Lea & Febiger, 1992, pp. 15-20.

    Google Scholar 

  20. Rubin, C. T., and L. E. Lanyon. Osteoregulatory nature of mechanical stimuli: function as a determinant for adaptive remodeling in bone. J. Orthop. Res. 5:300-310, 1987.

    Google Scholar 

  21. Sadoshima, J.-I., L. Jahn, T. Takahashi, T. J. Kulik, and S. Izumo. Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. J. Biol. Chem. 267:10551- 10560, 1992.

    Google Scholar 

  22. Sah, R. L.-Y., Y.-J. Kim, J.-Y. H. Doong, A. J. Grodzinsky, A. H. K. Plaas, and J. D. Sandy. Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 7:619-636, 1989.

    Google Scholar 

  23. Schaffer, J. L., M. Rizen, G. J. L'Italien, A. Benbrahim, J. Megerman, L. C. Gerstenfeld, and M. L. Gray. Device for the application of a dynamic biaxially uniform and isotropic strain to a flexible cell culture membrane. J. Orthop. Res. 12:709-719, 1994.

    Google Scholar 

  24. Shyy, Y.-J., M.-C. Lin, J. Han, Y. Lu, M. Petrime, and S. Chien. The cis-acting phorbol ester “12-Otetradecanoylphorbol 13-acetate”-responsive element is involved in shear stress-induced monocyte chemotactic protein 1 gene expression. Proc. Natl. Acad. Sci. USA 92:8069- 8073, 1995.

    Google Scholar 

  25. Sumpio, B. E. Hemodynamic Forces and Vascular Cell Biology. Austin/Georgetown: Landers, 1993, pp. 66-89.

    Google Scholar 

  26. Terracio, L., B. Miller, and T. Borg. Effects of cyclic mechanical stimulation of the cellular components of the heart: in vitro. In Vitro Cell. Dev. Biol. 24:53-58, 1988.

    Google Scholar 

  27. Vandenburgh, H. H. A computerized mechanical cell stimulator for tissue culture: Effects on skeletal muscle organogenesis. In Vitro Cell. Dev. Biol. 23:609-619, 1988.

    Google Scholar 

  28. Vandenburgh, H. H., and P. Karlisch. Lonitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical cell stimulator. In Vitro Cell. Dev. Biol. 25:607-616, 1989.

    Google Scholar 

  29. Villarreal, F. J., L. K. Waldman, and W. Y. Lew. Technique for measuring regional two-dimensional finite strains in canine left ventricle. Circ. Res. 62:711-721, 1988.

    Google Scholar 

  30. Winston, F. K., E. J. Macarak, S. F. Gorfien, and L. E. Thibault. A system to reproduce and quantify the biomechanical environment of the cell. J. Appl. Physiol. 67:397- 405, 1989.

    Google Scholar 

  31. Yamazaki, T., I. Komuro, S. Kudoh, Y. Zou, I. Shiojima, T. Mizuno, H. Takano, Y. Hiroi, K. Ueki, K. Tobe, T. Kadowaki, R. Nagai, and Y. Yazaki. Angiotensin II partly mediates mechanical stress-induced cardiac hypertrophy. Circ. Res. 77:258-265, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sotoudeh, M., Jalali, S., Usami, S. et al. A Strain Device Imposing Dynamic and Uniform Equi-Biaxial Strain to Cultured Cells. Annals of Biomedical Engineering 26, 181–189 (1998). https://doi.org/10.1114/1.88

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.88

Navigation