Skip to main content
Log in

A Computational Model for Glycogenolysis in Skeletal Muscle

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A dynamic model of the glycogenolytic pathway to lactate in skeletal muscle was constructed with mammalian kinetic parameters obtained from the literature. Energetic buffers relevant to muscle were included. The model design features stoichiometric constraints, mass balance, and fully reversible thermodynamics as defined by the Haldane relation. We employed a novel method of validating the thermodynamics of the model by allowing the closed system to come to equilibrium; the combined mass action ratio of the pathway equaled the product of the individual enzymes' equilibrium constants. Adding features physiologically relevant to muscle—a fixed glycogen concentration, efflux of lactate, and coupling to an ATPase—allowed for a steady-state flux far from equilibrium. The main result of our analysis is that coupling of the glycogenolytic network to the ATPase transformed the entire complex into an ATPase driven system. This steady-state system was most sensitive to the external ATPase activity and not to internal pathway mechanisms. The control distribution among the internal pathway enzymes—although small compared to control by ATPase—depended on the flux level and fraction of glycogen phosphorylase a. This model of muscle glycogenolysis thus has unique features compared to models developed for other cell types. © 2002 Biomedical Engineering Society.

PAC2002: 8719Ff, 8239Fk, 8718Bb, 8714Ee

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Achs, M. J., and D. Garfinkel. Metabolism of the acutely ischemic dog heart. I. Construction of a computer model. Am. J. Physiol. 236:R21-R30, 1979.

    Google Scholar 

  2. Arnold, H., and D. Pette. Binding of glycolytic enzymes to structure proteins of the muscle. Eur. J. Biochem. 6:163-171, 1968.

    Google Scholar 

  3. Bakker, B. M., P. A. M. Michels, F. R. Opperdoes, and H. V. Westerhoff. Glycolysis in bloodstream form Trypanosoma brucei can be understood in terms of the kinetics of the glycolytic enzymes. J. Biol. Chem. 272:3207-3215, 1997.

    Google Scholar 

  4. Bass, A., D. Brdiczka, P. Eyer, S. Hofer, and D. Pette. Metabolic differentiation of distinct muscle types at the level of enzymatic organization. Eur. J. Biochem. 10:198-206, 1969.

    Google Scholar 

  5. Bennett, N. G., and H. Gutfreund. The kinetics of the interconversion of intermediates of the reaction of pig muscle lactate dehydrogenase with oxidized nicotinamide-adenine dinucleotide and lactate. Biochem. J. 135:81-85, 1973.

    Google Scholar 

  6. Box, G. E. P., W. G. Hunter, and J. S. Hunter. Statistics for Experimenters. An Introduction to Design, Data Analysis and Model Building. New York: Wiley, 1978, p. 653.

    Google Scholar 

  7. Cardenas, J. M., E. G. Blachly, P. L. Ceccotti, and R. D. Dyson. Properties of chicken skeletal muscle pyruvate kinase and a proposal for its evolutionary relationship to the other avian and mammalian isozymes. Biochemistry 14:2247-2252, 1975.

    Google Scholar 

  8. Cheetham, M. E., L. H. Boobis, S. Brooks, and C. Williams. Human muscle metabolism during sprint running. J. Appl. Physiol. 61:54-60, 1986.

    Google Scholar 

  9. Conlee, R. K., J. A. McLane, M. J. Rennie, W. W. Winder, and J. O. Holloszy. Reversal of phosphorylase activation in muscle despite continued contractile activity. Am. J. Physiol. 237:R291-R296, 1979.

    Google Scholar 

  10. Conley, K. E., M. L. Blei, T. L. Richards, M. J. Kushmerick, and S. A. Jubrias. Activation of glycolysis in human muscle in vivo. Am. J. Physiol. 273:C306-C315, 1997.

    Google Scholar 

  11. Conley, K. E., M. J. Kushmerick, and S. A. Jubrias. Glycolysis is independent of oxygenation state in stimulated human skeletal muscle in vivo. J. Physiol. (London) 511:935-945, 1998.

    Google Scholar 

  12. Connett, R., and K. Sahlin. Control of glycolysis and glycogen metabolism. In: Handbook of Physiology, edited by L. Rowell and J. Shepherd. New York: Oxford University Press, 1996, Sec. 12, pp. 870-911.

    Google Scholar 

  13. Cornish-Bowden, A., and M. L. Cardenas. Irreversible reactions in metabolic simulations: How reversible is irreversible? In: Animating the Cellular Map, edited by J.-H. S. Hofmeyr, J. H. Rowher, and J. L. Snoep. Stellenbosch: Stellenbosch University Press, 2000, pp. 65-71.

  14. Crerar, M. M., O. Karlsson, R. J. Fletterick, and P. K. Hwang. Chimeric muscle and brain glycogen phosphorylases define protein domains governing isozyme-specific responses to allosteric activation. J. Biol. Chem. 270:13748-13756, 1995.

    Google Scholar 

  15. Crowther, G. J., M. F. Carey, W. F. Kemper, and K. E. Conley. Control of glycolysis in contracting skeletal muscle. I. Turning it on. Am. J. Physiol. 282:E67-E73, 2002.

    Google Scholar 

  16. Dabrowska, A., I. Kamrowska, and T. Baranowski. Purification, crystallization, and properties of triosephosphate isomerase from human skeletal muscle. Acta Biochim. Pol. 25:247-256, 1978.

    Google Scholar 

  17. De Weer, P., and A. G. Lowe. Myokinase equilibrium. An enzymatic method for the determination of stability constants of magnesium complexes with adenosine triphosphate, adenosine diphosphate, and adenosine monophosphate in media of high ionic strength. J. Biol. Chem. 248:2829-2835, 1973.

    Google Scholar 

  18. Dyson, R. D., J. M. Cardenas, and R. J. Barsotti. The reversibility of skeletal muscle pyruvate kinase and an assessment of its capacity to support glyconeogenesis. J. Biol. Chem. 250:3316-3321, 1975.

    Google Scholar 

  19. Engers, H. D., W. A. Bridger, and N. B. Madsen. Kinetic mechanism of phosphorylase b. Rates of initial velocities and of isotope exchange at equilibrium. J. Biol. Chem. 244:5936-5942, 1969.

    Google Scholar 

  20. Fifis, T., and R. K. Scopes. Purification of 3-phosphoglycerate kinase from diverse sources by affinity elution chromatography. Biochem. J. 175:311-319, 1978.

    Google Scholar 

  21. Furfine, C. S., and S. F. Velick. The acyl-enzyme intermediate and the kinetic mechanism of the glyceraldehyde 3-phosphate dehydrogenase reaction. J. Biol. Chem. 240:844-855, 1965.

    Google Scholar 

  22. Garfinkel, D., R. A. Frenkel, and L. Garfinkel. Simulation of the detailed regulation of glycolysis in a heart supernatant preparation. Comput. Biomed. Res. 2:68-91, 1968.

    Google Scholar 

  23. Gold, A. M., R. M. Johnson, and J. K. Tseng. Kinetic mechanism of rabbit muscle glycogen phosphorylase a. J. Biol. Chem. 245:2564-2572, 1970.

    Google Scholar 

  24. Harris, R. C., E. Hultman, and L. O. Nordesjo. Glycogen, glycolytic intermediates, and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. Scand. J. Clin. Lab. Invest. 33:109-120, 1974.

    Google Scholar 

  25. Hofmeyr, J. H. Metabolic regulation: A control analytic perspective. J. Bioenerg. Biomembr. 27:479-490, 1995.

    Google Scholar 

  26. Hofmeyr, J. S., and A. Cornish-Bowden. Regulating the cellular economy of supply and demand. FEBS Lett. 476:47-51, 2000.

    Google Scholar 

  27. Imamura, K., and T. Tanaka. Pyruvate kinase isozymes from rat. Methods Enzymol. 90:150-165, 1982.

    Google Scholar 

  28. Johnson, M. J. Enzyme equilibria and thermodynamics. In: The Enzymes, 4, edited by H. L. P. D. Boyer and K. Myrbäck. New York: Academic, 1959, pp. 407-441.

    Google Scholar 

  29. Joshi, A., and B. O. Palsson. Metabolic dynamics in the human red cell. Part III. Metabolic reaction rates. J. Theor. Biol. 142:41-68, 1990.

    Google Scholar 

  30. Joshi, J. G., and P. Handler. Phosphoglucomutase. I. Purifi-cation and properties of phosphoglucomutase from Escherichia coli. J. Biol. Chem. 239:2741, 1964.

    Google Scholar 

  31. Kahana, S. F., O. H. Lowry, D. W. Schulz, J. V. Passoneau, and E. J. Crawford. The kinetics of phosphoglucoisomerase. J. Biol. Chem. 235:2178-2184, 1960.

    Google Scholar 

  32. Klinov, S. V., and B. I. Kurganov. Kinetic mechanism of activation of muscle glycogen phosphorylase b by adenosine 58-monophosphate. Arch. Biochem. Biophys. 312:14-21, 1994.

    Google Scholar 

  33. Krietsch, W. K., and T. Bucher. 3-phosphoglycerate kinase from rabbit sceletal muscle and yeast. Eur. J. Biochem. 17:568-580, 1970.

    Google Scholar 

  34. Krietsch, W. K., P. G. Pentchev, H. Klingenburg, T. Hofstatter, and T. Bucher. The isolation and crystallization of yeast and rabbit liver triose phosphate isomerase and a comparative characterization with the rabbit muscle enzyme. Eur. J. Biochem. 14:289-300, 1970.

    Google Scholar 

  35. Mahler, H. R., and E. H. Cordes. Biological Chemistry. New York: Harper and Row, 1971, p. 1009.

    Google Scholar 

  36. Merry, S., and H. G. Britton. The mechanism of rabbit muscle phosphofructokinase at pH8. Biochem. J. 226:13-28, 1985.

    Google Scholar 

  37. Minakami, S., and H. Yoshikawa. Studies on erythrocyte glycolysis. II. Free energy changes and rate limitings steps in erythrocyte glycolysis. J. Biochem. (Tokyo) 59:139-144, 1966.

    Google Scholar 

  38. Molnar, M., and M. Vas. Mg21 affects the binding of ADP but not ATP to 3-phosphoglycerate kinase. Correlation between equilibrium dialysis binding and enzyme kinetic data. Biochem. J. 293:595-599, 1993.

    Google Scholar 

  39. Mulquiney, P. J., and P. W. Kuchel. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: Equations and parameter refinement. Biochem. J. 342:581-596, 1999.

    Google Scholar 

  40. Nagata, K., K. Suzuki, and K. Imahori. Analysis of the allosteric properties of rabbit muscle phosphofructokinase by means of affinity labeling with a reactive ATP analog. J. Biochem. (Tokyo) 86:1179-1189, 1979.

    Google Scholar 

  41. Nakae, Y., and P. J. Stoward. Kinetic parameters of lactate dehydrogenase in liver and gastrocnemius determined by three quantitative histochemical methods. J. Histochem. Cytochem. 45:1427-1431, 1997.

    Google Scholar 

  42. Orsi, B. A., and W. W. Cleland. Inhibition and kinetic mechanism of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 11:102-109, 1972.

    Google Scholar 

  43. Parolin, M. L., A. Chesley, M. P. Matsos, L. L. Spriet, N. L. Jones, and G. J. Heigenhauser. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am. J. Physiol. 277:E890-E900, 1999.

    Google Scholar 

  44. Parra, J., J. A. Cadefau, G. Rodas, N. Amigo, and R. Cusso. The distribution of rest periods affects performance and adaptations of energy metabolism induced by high-intensity training in human muscle. Acta Physiol. Scand. 169:157-165, 2000.

    Google Scholar 

  45. Penhoet, E. E., M. Kochman, and W. J. Rutter. Isolation of fructose diphosphate aldolases A, B, and C. Biochemistry 8:4391-4395, 1969.

    Google Scholar 

  46. Peters, S. J., and L. L. Spriet. Skeletal muscle phosphofructokinase activity examined under physiological conditions in vitro. J. Appl. Physiol. 78:1853-1858, 1995.

    Google Scholar 

  47. Pette, D., and H. W. Hofer. The constant proportion enzyme group concept in the selection of reference enzymes in metabolism. Ciba Found Symp. 73:231-244, 1979.

    Google Scholar 

  48. Popova, S. V., and E. E. Sel'kov. Description of the kinetics of the two substrate reactions S11S2 goes to and comes from S31S4 by a generalized Monod, Wyman, Changeux model. Mol. Biol. (Moscow) 13:129-139, 1979.

    Google Scholar 

  49. Puigjaner, J., B. Rais, M. Burgos, B. Comin, J. Ovadi, and M. Cascante. Comparison of control analysis data using different approaches: Modeling and experiments with muscle extract. FEBS Lett. 418:47-52, 1997.

    Google Scholar 

  50. Richard, P., B. Teusink, M. B. Hemker, K. Van Dam, and H. V. Westerhoff. Sustained oscillations in free-energy state and hexose phosphates in yeast. Yeast 12:731-740, 1996.

    Google Scholar 

  51. Rider, C. C., and C. B. Taylor. Enolase isoenzymes in rat tissues. Electrophoretic, chromatographic, immunological, and kinetic properties. Biochim. Biophys. Acta 365:285-300, 1974.

    Google Scholar 

  52. Rose, Z. B., and S. Dube. Phosphoglycerate mutase. Kinetics and effects of salts on the mutase and bisphosphoglycerate phosphatase activities of the enzyme from chicken breast muscle. J. Biol. Chem. 253:8583-8592, 1978.

    Google Scholar 

  53. Sahlin, K. NADH in human skeletal muscle during shortterm intense exercise. Pflugers Arch. 403:193-196, 1985.

    Google Scholar 

  54. Schimerlik, M. I., and W. W. Cleland. Inhibition of creatine kinase by chromium nucleotides. J. Biol. Chem. 248:8418-8423, 1973.

    Google Scholar 

  55. Scopes, R. K. Studies with a reconstituted muscle glycolytic system. The rate and extent of creatine phosphorylation by anaerobic glycolysis. Biochem. J. 134:197-208, 1973.

    Google Scholar 

  56. Segel, I. H. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems. New York: Wiley, 1975, p. 957.

    Google Scholar 

  57. Sempere, S., A. Cortes, and J. Bozal. Kinetic mechanism of guinea-pig skeletal muscle lactate dehydrogenase (M4) with oxaloacetate NADH and pyruvate NADH as substrates. Int. J. Biochem. 13:727-731, 1981.

    Google Scholar 

  58. Smith, C. M., and S. F. Velick. The glyceraldehyde 3-phosphate dehydrogenases of liver and muscle. Cooperative interactions and conditions for functional reversibility. J. Biol. Chem. 247:273-284, 1972.

    Google Scholar 

  59. Smolen, P. A model for glycolytic oscillations based on skeletal muscle phosphofructokinase kinetics. J. Theor. Biol. 174:137-148, 1995.

    Google Scholar 

  60. Teusink, B. Exposing a complex metabolic system: Glycolysis in Saccharomyces cerevisiae. In: Department of Biology, BioCentrum Amsterdam, Amsterdam, The Netherlands: Universiteit van Amsterdam, 1999, p. 231.

    Google Scholar 

  61. Teusink, B., J. Passarge, C. A. Reijenga, E. Esgalhado, C. C. van der Weijden, M. Schepper, M. C. Walsh, B. M. Bakker, K. van Dam, H. V. Westerhoff, and J. L. Snoep. Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur. J. Biochem. 267:5313-5329, 2000.

    Google Scholar 

  62. Thuma, E., R. H. Schirmer, and I. Schirmer. Preparation and characterization of a crystalline human ATP:AMP phosphotransferase. Biochim. Biophys. Acta 268:81-91, 1972.

    Google Scholar 

  63. Velick, S. F., and C. Furfine. Glyceraldehyde 3-phosphate dehydrogenase. In: The Enzymes, 7, edited by P. D. Boyer, H. Lardy, and K. Myrbäck. New York: Academic, 1963, Vol. 7, Chap. 12.

    Google Scholar 

  64. Vicini, P., and M. J. Kushmerick. Cellular energetics analysis by a mathematical model of energy balance: Estimation of parameters in human skeletal muscle. Am. J. Physiol. 279:C213-C224, 2000.

    Google Scholar 

  65. Waser, M. R., L. Garfinkel, M. C. Kohn, and D. Garfinkel. Computer modeling of muscle phosphofructokinase kinetics. J. Theor. Biol. 103:295-312, 1983.

    Google Scholar 

  66. Zewe, V., and H. J. Fromm. Kinetic studies of rabbit muscle lactate dehydrogenase. J. Biol. Chem. 237:1668-1675, 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambeth, M.J., Kushmerick, M.J. A Computational Model for Glycogenolysis in Skeletal Muscle. Annals of Biomedical Engineering 30, 808–827 (2002). https://doi.org/10.1114/1.1492813

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1492813

Navigation