Skip to main content
Log in

Biomechanics of Plaque Rupture: Progress, Problems, and New Frontiers

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Plaque rupture has become identified as a critical step in the evolution of arterial plaques, especially as clinically significant events occur in critical arteries. It has become common in the past dozen years or so to consider which plaques are vulnerable, even though not yet ruptured. Thrombotic events have remained significant, but in a context where they are seen as being triggered often by plaque rupture. Weaving together considerations from structural mechanics, fluid mechanics, plaque morphology, epidemiological pathology, micromechanical measurements of arterial wall tissues, and emerging information on the complex roles of the matrix metalloproteinases, this critical review draws attention to the relative paucity of data (i) on the mechanical behavior of small test portions of arterial tissues and (ii) on the relation of plaque locations to local vessel curvature and curvature flexure. This is especially important in the epicardial arteries, where combination of biplane angiograms and intravascular ultrasound (both becoming increasingly available in digital recordings) offer opportunities for clinical investigation, allied to biomechanics, to an extent previously not possible. Improved imaging and local tissue property assessments provide related opportunities for the carotid bifurcation. The discussion includes a proposal for developing an assessment scale for plaque vulnerability. © 2002 Biomedical Engineering Society.

PAC2002: 8719Rr, 8719Xx, 8763Df, 4380Vj, 4380Qf

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abela, G. S., P. D. Picon, S. E. Freidel, O. C. Gebara, A. Miyamoto, M. Federman, G. H. Tofler, and J. E. Muller. Triggering of plaque disruption and arterial thrombosis in an atherosclerotic rabbit model. Circulation 91:776–784, 1995.

    Google Scholar 

  2. Beaupre, G. S., T. E. Orr, and D. R. Carter. An approach for time-dependent bone remodeling—Theoretical development. J. Orthop. Res. 8:651–661, 1990.

    Google Scholar 

  3. Bentzon, J. F., and E. Falk. Coronary plaques calling for action—Why, where, and how many? Eur. Heart J. 3:I3–I9, 2001.

    Google Scholar 

  4. Bestehorn, H. P. et al. The effect of simvastatin on progression of coronary artery disease—The Multicenter Coronary Intervention Study (CIS), Eur. Heart J. 18:226–234, 1997.

    Google Scholar 

  5. Born, G. V. R., and P. D. Richardson. Mechanical properties of human atherosclerotic lesions. In: Pathology of the Human Atherosclerotic Plaque, edited by S. Glagov, W. P. Newman, and S. Shaffer. Berlin: Springer, 1989.

    Google Scholar 

  6. Brusseau, E., J. Fromageau, G. Finet, P. Delachartre, and D. Vray. Axial strain imaging of intravascular data: Results on polyvinyl alcohol cryogel phantoms and carotid artery. Ultrasound Med. Biol. 27:1631–1642, 2001.

    Google Scholar 

  7. Burke, A. P., F. D. Kolodgie, A. Farb, D. K. Weber, G. T. Malcom, J. Smialek, and R. Virmani. Healed plaque ruptures and sudden coronary death—Evidence that subclinical rupture has a role in plaque progression. Circulation 103:934–940, 2001.

    Google Scholar 

  8. Burleigh, M. C., A. D. Briggs, C. L. Lendon, M. J. Davies, G. V. R. Born, and P. D. Richardson. Collagen types I and III, collagen content, GAGs, and mechanical strength of human atherosclerotic plaque caps: span-wise variations. Atherosclerosis 96:71–81, 1992.

    Google Scholar 

  9. Caro, C., J. M. Fitz-Gerald, and R. C. Schroter. Arterial wall shear and distribution of early atheroma in man. Nature (London) 223:1159–1161, 1969.

    Google Scholar 

  10. Caro, C., J. M. Fitz-Gerald, and R. C. Schroter. Atheroma and wall shear. Observations, correlations, and a proposal of a shear-dependent mass transfer mechanism for atherogenesis. Proc. R. Soc. London, Ser. B 77:109–159, 1971.

    Google Scholar 

  11. Carrell, T. W. G., K. G. Burnand, G. M. A. Wells, J. M. Clements, and A. Smith. Stromelysin-1 (matrix metalloproteinase-3) and tissue inhibitor of matrix metalloproteinase-3 are overexpressed in the wall of abdominal aortic aneurisms. Circulation 105:477–482, 2002.

    Google Scholar 

  12. Carter, D. R., T. E. Orr, and D. P. Fyhrie. Relationships between loading history and femoral cancellous bone architecture. J. Biomech. 22:231–244, 1989.

    Google Scholar 

  13. Cespedes, E. I., C. L. van der Korte, and A. F. W. van der Steen. Intraluminal ultrasonic palpation: Assessment of local and cross-sectional tissue stiffness. Ultrasound Med. Biol. 26:385–396, 2000.

    Google Scholar 

  14. Constantinides, P. Plaque fissure in human coronary thrombosis. J. Atheroscler Res. 6:1–17, 1966.

    Google Scholar 

  15. Cothren, R. M., R. Shekhar, E. M. Tuzcu, S. E. Nissen, J. F. Cornhill, and D. G. Vince. Three-dimensional reconstruction of the coronary artery wall by image fusion of intravascular ultrasound and biplane angiography. Int. J. Card. Imaging 16:69–85, 2000.

    Google Scholar 

  16. Crisby, M., G. Nordin-Fredriksson, P. K. Shah, J. Yano, J. Zhu, and J. Nilsson. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, meatalloproteinases, and cell death in human carotid plaques—Implications for plaque stabilization. Circulation 103:926–933, 2001.

    Google Scholar 

  17. Davies, M. J. Atlas of Coronary Artery Disease. Philadelphia, PA: Lippincott-Raven, 1998.

    Google Scholar 

  18. Davies, M. J. Acute coronary thrombosis—The role of plaque disruption and its initiation and prevention. Eur. Heart J. 16:3–7, 1995.

    Google Scholar 

  19. Davies, M. J. The contribution of thrombosis to the clinical expression of coronary atherosclerosis. Thromb. Res. 82:1–32, 1996.

    Google Scholar 

  20. Davies, M. J., P. D. Richardson, N. Woolf, D. R. Katz, and J. Mann. Risk of thrombosis in human atherosclerotic plaques: Role of extracellular lipid, macrophage, and smooth muscle cell content. Br. Heart J. 69:377–381, 1993.

    Google Scholar 

  21. Davies, M. J., and A. C. Thomas. Plaque fissuring—The cause of acute myocardial infarction, sudden ischemic death, and crescendo angina. Br. Heart J. 53:363–373, 1985.

    Google Scholar 

  22. Davies, M. J., and T. Thomas. The pathological basis and microanatomy of occlusive thrombus formation in human coronary arteries. Philos. Trans. R. Soc. London, Ser. B 294:225–229, 1981.

    Google Scholar 

  23. de Korte, C. L., G. Pasterkamp, A. F. W. van der Steen, H. A. Woutman, and N. Bom. Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro. Circulation 102:617–623, 2000.

    Google Scholar 

  24. Ding, Z., H. Zhu, and M. H. Friedman. Coronary artery dynamics in vivo. Ann. Biomed. Eng. 30:419–429, 2002.

    Google Scholar 

  25. Doi, M. Introduction to Polymer Physics. Oxford, U.K.: Clarendon, 1996.

    Google Scholar 

  26. Doi, M., and S. F. Edwards. The Theory of Polymer Dynamics. New York: Oxford University Press, 1986.

    Google Scholar 

  27. Falk, E., P. K. Shah, and V. Fuster. Coronary plaque disruption. Circulation 92:657–671, 1995.

    Google Scholar 

  28. Ferrans, V. J.. New insights into the world of matrix metalloproteinases. Circulation 105:405–407, 2002.

    Google Scholar 

  29. Freund, L. B. Dynamic Fracture Mechanics. Cambridge, U.K.: Cambridge University Press, 1990.

    Google Scholar 

  30. Fukushima, T., and T. Azuma. The horseshoe vortex: A secondary flow generated in arteries with stenosis, bifurcation, and branchings. Biorheology 19:143–154, 1982.

    Google Scholar 

  31. Fung, Y. C. Biomechanics. Berlin: Springer, 1981.

    Google Scholar 

  32. Fuster, V. Elucidation of the role of plaque instability and rupture in acute coronary events. Am. J. Cardiol. 76:24C–33C, 1995.

    Google Scholar 

  33. Gross, M. F., and M. H. Friedman. Dynamics of coronary artery curvature obtained from biplane cineangiograms. J. Biomech. 31:479–484, 1998.

    Google Scholar 

  34. Helft, G. et al. Identification of unstable coronary atherosclerotic plaques. Arch. Mal Coeur Vaiss 94:583–590, 2001.

    Google Scholar 

  35. Hoeks, A. P. G., P. J. Brands, J. M. Willigers, and R. S. Reneman. Noninvasive measurement of mechanical properties of arteries in health and disease. Proc. Inst. Mech. Eng., Part H: J. Eng. Med. 213(H3):195–202, 1999.

    Google Scholar 

  36. Hoher, M., V. Hombach, and J. Wohrle. Angioscopic predictors of restenosis following angioplasty—The impact of yellow smooth plaques. Z. Kardiol. 90:111–119, 2001.

    Google Scholar 

  37. Honda, H. M., T. Hsiai, C. M. Wortham, M. Chen, H. Lin, M. Navab, and L. L. Demer. A complex flow pattern of low shear stress and flow reversal promotes monocyte binding to endothelial cells. Atherosclerosis 158:385–390, 2001.

    Google Scholar 

  38. Johnson, J. L., and C. L. Jackson. Atherosclerotic plaque rupture in the apolipoprotein-E knockout mouse. Atherosclerosis 154:399–406, 2001.

    Google Scholar 

  39. Klingensmith, J. D., R. Shekhar, and D. G. Vince. Evaluation of three-dimensional segmentation algorithms for the identification of luminal and medial-adventitial borders in intravascular ultrasound images. IEEE Trans. Med. Imaging 19:1–17, 2000.

    Google Scholar 

  40. Kratky, R. G., J. Ivey, and M. R. Roach. Local changes in collagen content in rabbit aortic atherosclerotic lesions with time. Atherosclerosis 143:7–14, 1999.

    Google Scholar 

  41. Lee, R. T., A. J. Grodzinsky, E. H. Frank, R. D. Kamm, and F. J. Schoen. Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation 83:1764–1770, 1991.

    Google Scholar 

  42. Lee, E., A. J. Grodzinsky, P. Libby, S. K. Clinton, M. W. Lark, and R. T. Lee. Human vascular smooth-muscle cellmonocyte interactions and metalloproteinase secretion in culture. Arterioscler., Thromb., Vasc. Biol. 15:2284–2289, 1995.

    Google Scholar 

  43. Lee, R. T., and P. Libby. The unstable atheroma. Arterioscler., Thromb., Vasc. Biol. 17:1859–1867, 1997.

    Google Scholar 

  44. Lee, R. T., F. J. Schoen, H. M. Loree, M. W. Lark, and P. Libby. Circumferential stress and matrix metalloproteinase-1 in human coronary atherosclerosis—Implications for plaque rupture. Arterioscler., Thromb., Vasc. Biol. 16:1070–1073, 1996.

    Google Scholar 

  45. Lendon, C., M. J. Davies, G. V. R. Born, and P. D. Richardson. Atherosclerotic plaque caps are locally weakened when macrophage density is increased. Atherosclerosis 87:87–90, 1991.

    Google Scholar 

  46. Loree, H. M., R. D. Kamm, R. G. Stringfellow, and R. T. Lee. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ. Res. 71:850–858, 1992.

    Google Scholar 

  47. Loree, H. M., B. J. Tobias, L. J. Gibson, R. D. Kamm, D. M. Small, and R. T. Lee. Mechanical properties of model atherosclerotic lesion lipid pools. Arterioscler. Thromb. 14:230–234, 1994.

    Google Scholar 

  48. The Geographic Pathology of Atherosclerosis, edited by H. McGill, Jr. Baltimore: Williams and Wilkins, 1968, reference tables of data, pp. 181–193.

  49. Milei, J., J. C. Parodi, G. F. Alonso, A. Barone, D. Grana, and L. Matturri. Carotid rupture and intraplaque hemorrhage: Immunophenotype and role of cells involved. Am. Heart J. 136:1096–1105, 1998.

    Google Scholar 

  50. Moreno, P. R. et al. Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-red spectroscopy. Circulation 105:923–927, 2002.

    Google Scholar 

  51. Nair, A., B. D. Kuban, N. Obuchowski, and D. G. Vince. Assessing spectral algorithms to predict atherosclerotic plaque composition with normalized and raw intravascular ultrasound data. Ultrasound Med. Biol. 27:1319–1331, 2001.

    Google Scholar 

  52. Ohayon, J., P. Teppaz, G. Finet, and R. Rioufol. In vivo prediction of human coronary plaque rupture location using intravascular ultrasound and the finite-element method. Coron. Artery Dis. 12:655–663, 2001.

    Google Scholar 

  53. Prause, G. P. M., S. C. deJong, C. R. McKay, and M. Sonka. Towards a geometrically correct 3D reconstruction of tortuous coronary arteries based on biplane angiography and intravascular ultrasound. Int. J. Card. Imaging 13:451–462, 1997.

    Google Scholar 

  54. Rakebrandt, F., D. C. Crawford, D. Harvar, D. Coleman, and J. P. Woodcock. Relationship between ultrasound texture classification images and histology of atherosclerotic plaque. Ultrasound Med. Biol. 26:1393–1402, 2000.

    Google Scholar 

  55. Rekhter, M. D. Collagen synthesis in atherosclerosis: Too much and not enough. Cardiovasc. Res. 41:376–384, 1999.

    Google Scholar 

  56. Rekhter, M. D. et al. Hypercholesterolemia causes mechanical weakening of rabbit atheroma—Local collagen loss as a prerequisite of plaque rupture. Circ. Res. 86:101–108, 2000.

    Google Scholar 

  57. Reneman, R. S., and A. G. P. Hoeks. Noninvasive vascular ultrasound: An asset in vascular medicine. Circ. Res. 45:27–35, 2000.

    Google Scholar 

  58. Richardson, P. D. The progression of atherosclerosis—Role of plaque fissuring and thrombosis, In: New Horizons in Coronary Heart Disease, edited by G. Born et al. London: Science, 1993, Chap. 11b.

    Google Scholar 

  59. Richardson, P. D. Arterial Gaussian curvature and the shapes of atherosclerotic plaques. Proceedings of the IEEE 27th NorthEast Bioengineering Conference, 2001, pp. 29–30.

  60. Richardson, P. D., and J. Christo. Flow separation opposite a side branch. In: Biofluid Mechanics: Blood Flow in Large Vessels, edited by D. Liepsch. Berlin: Springer, 1990, pp. 275–283.

    Google Scholar 

  61. Richardson, P. D., M. J. Davies, and G. V. R. Born. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet ii:941–944, 1989.

    Google Scholar 

  62. Richardson, P. D., and S. Lazzara. Human blood oscillating axially in a tube. Biorheology 20:317–326, 1983.

    Google Scholar 

  63. Richardson, P. D., and S. M. Keeny. Anisotropy of human coronary artery intima. Proceedings of the 15th Annual Northeast Bioengineering Conference, 1989, pp. 205–206.

  64. Richardson, P. D., A. Parhizgar, H. F. Sasken, T-H. Chiu, P. Aebischer, L. A. Trudell, and P. M. Galletti. Tissue characterization by micromechanical testing of growths around implants. In: Progress in Artificial Organs—1985, edited by Y. Nose, C. Kjellstrand, and P. Ivanovich. Cleveland, OH: (ISAO), 1019, 1985, pp. 1015–1019.

    Google Scholar 

  65. Salunke, N. V., L. D. T. Topoleski, J. D. Humphrey, and W. J. Mergner. Compressive stress relaxation of human atherosclerotic plaque. J. Biomed. Mater. Res. 55:236–241, 2001.

    Google Scholar 

  66. Scanlon, P. J. et al. ACC/AHA guidelines for coronary angiography. J. Am. Coll. Cardiol. 33:1756–1824, 1999.

    Google Scholar 

  67. Severson, A. R., R. T. Ingram, and L. A. Fitzpatrick. Matrix proteins associated with bone calcification are present in human vascular smooth muscle cells grown in vitro. In Vitro In Vitro Cell. Dev. Biol.: Anim. 31:853–857, 1995.

    Google Scholar 

  68. Shah, P. K. et al. Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques—Potential role of matrix-degrading proteinases and implications for plaque rupture. Circulation 92:1565–1569, 1995.

    Google Scholar 

  69. Sloop, G. D., K. B. Fallon, and A. W. Zieske. Atherosclerotic plaque-like lesions in synthetic arteriovenous grafts: Implications for atherogenesis. Atherosclerosis 160:133–139, 2002.

    Google Scholar 

  70. Spencer, A. J. M. Deformations of fiber-reinforced materials. Oxford, U.K.: Clarendon, 1972.

    Google Scholar 

  71. Stein, P. D., M. S. Hamid, K. Shivkumar, T. P. Davis, F. Khaja, and J. W. Henry. Effects of cyclic flexion of coronary arteries on progression of atherosclerosis. Am. J. Cardiol. 73:431–437, 1994.

    Google Scholar 

  72. Steinman, D. A.. Image-based CFD modeling in realistic arterial geometries. Ann. Biomed. Eng. 30:483–497, 2002.

    Google Scholar 

  73. Svindland, A. The localization of sudanophilic and fibrous plaques in the main left coronary bifurcation. Atherosclerosis 48:139–145, 1983.

    Google Scholar 

  74. Takano, M. et al. Mechanical and structural characteristics of vulnerable plaques: Analysis by coronary angioscopy and in travascular ultrasound. J. Am. Coll. Cardiol. 38:99–104, 2001.

    Google Scholar 

  75. Texon, M. Hemodynamic Basis of Atherosclerosis. Washington, DC: Hemisphere, 1980.

    Google Scholar 

  76. Thubrikar, M. J., M. Labrosse, F. Robicsek, J. Al-Soudi, and B. Fowler. Mechanical properties of abdominal aortic aneurism wall. J. Med. Eng. Technol. 25:133–142, 2001.

    Google Scholar 

  77. van der Meulen, M. C. H., G. S. Beaupre, and D. R. Carter. Mechanobiologic influences in long-bone cross-sectional growth. Bone (N.Y.) 14:635–642, 1993.

    Google Scholar 

  78. van der Meulen, M. C. H., and D. R. Carter. Developmental mechanics determine long-bone allometry. J. Theor. Biol. 172:323–327, 1995.

    Google Scholar 

  79. Varnarva, A. M., P. G. Mills, and M. J. Davies. Relationship between coronary artery remodeling and plaque vulnerability. Circulation 105:939–943, 2002.

    Google Scholar 

  80. Veress, A. I.et al. Age-related development of atherosclerotic plaque stress: A population-based finite-element analysis. Coron. Artery Dis. 9:13–19, 1998.

    Google Scholar 

  81. Vince, D. G., K. J. Dixon, R. M. Cothren, and J. F. Cornhill. Comparison of texture analysis methods for the characterization of coronary plaques in intravascular ultrasound images. Comput. Med. Imaging Graph. 24:221–229, 2000.

    Google Scholar 

  82. Vink, A., A. H. Schoneveld, M. Poppen, D. P. V. de Kleijn, C. Borst, and G. Pasterkamp. Morphometric and immunohistochemical characterization of the intimal layer throughout the arterial system of elderly humans. J. Anat. 200:97–107, 2002.

    Google Scholar 

  83. von Birgelen, C. et al. EGG-gated three-dimensional intravascular ultrasound—Feasibility and reproducibility of the automated analysis of coronary lumen and atherosclerotic plaque dimensions in humans. Circulation 96:2944–2952, 1999.

    Google Scholar 

  84. von Birgelen, C. et al. Reconstruction and quantification with three-dimensional ultrasound—An update on techniques, challenges, and future directions. Eur. Heart J. 18:1056–1067, 1997.

    Google Scholar 

  85. Vos, J. et al. Evolution of coronary atherosclerosis in patients with mild coronary artery disease studied by serial quantitative coronary angiography at 2 and 4 years follow-up. Eur. Heart J. 18:1081–1089, 1997.

    Google Scholar 

  86. Wiggs, B. R., C. A. Hrousis, J. M. Drazen, and R. D. Kamm. On the mechanism of mucosal folding in normal and asthmatic airways. J. Appl. Physiol. 83:1814–1821, 1997.

    Google Scholar 

  87. Woolf, N. Pathology of Atherosclerosis. London, U.K.: Butterworth Scientific, 1982.

    Google Scholar 

  88. Woolf, N. Cell, Tissue and Disease, 3rd ed. Philadelphia, PA: Saunders, 2000.

    Google Scholar 

  89. Xu, X. P. et al. Oxidized low-density lipoprotein regulates matrix metalloproteinase-9 and its tissue inhibitor in human monocyte-derived macrophages. Circulation 99:993–998, 1999.

    Google Scholar 

  90. Xu, X. Y., and M. W. Collins. Flow separation generated in branched tubes. Numerical methods in laminar and turbulent flows, Part I. In: Proceedings of the 8th International Conference on Numerical Methods in Laminar and Turbulent Flow, edited by C. Taylor. Swansea: Pineridge, 1993, pp. 597–607.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richardson, P.D. Biomechanics of Plaque Rupture: Progress, Problems, and New Frontiers. Annals of Biomedical Engineering 30, 524–536 (2002). https://doi.org/10.1114/1.1482781

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1482781

Navigation