Skip to main content
Log in

Measuring Receptor/Ligand Interaction at the Single-Bond Level: Experimental and Interpretative Issues

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

There is increased interest in measuring kinetic rates, lifetimes, and rupture forces of single receptor/ligand bonds. Valuable insights have been obtained from previous experiments attempting such measurements. However, it remains difficult to know with sufficient certainty that single bonds were indeed measured. Using exemplifying data, evidence supporting single-bond observation is examined and caveats in the experimental design and data interpretation are identified. Critical issues preventing definitive proof and disproof of single-bond observation include complex binding schemes, multimeric interactions, clustering, and heterogeneous surfaces. It is concluded that no single criterion is sufficient to ensure that single bonds are actually observed. However, a cumulative body of evidence may provide reasonable confidence. © 2002 Biomedical Engineering Society.

PAC2002: 8715Kg, 8715By, 8716-b

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Alon, R., S. Chen, K. D. Puri, E. B. Finger, and T. A. Springer. The kinetics of L–selectin tethers and the mechanics of selectin–mediated rolling. J. Cell Biol. 138:1169–1180, 1997.

    Google Scholar 

  2. Alon, R., D. A. Hammer, and T. A. Springer. Lifetime of the P–selectin–carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature (London) 374:539–542, 1995.

    Google Scholar 

  3. Anderson, R. G. The caveolae membrane system. Annu. Rev. Biochem. 67:199–225, 1998.

    Google Scholar 

  4. Bell, G. I. Models for the specific adhesion of cells to cells. Science 200:618–627, 1978.

    Google Scholar 

  5. Berlin, C., R. F. Bargatze, J. Campbell, U. H. von Andrian, C. Szabo, S. R. Hasslen, R. D. Nelson, E. L. Berg, S. L. Erlandsen, and E. C. Butcher. α4 integrins mediate lymphocyte attachment and rolling under physiological flow. Cell 80:413–422, 1995.

    Google Scholar 

  6. Bruehl, R. E., K. I. Moore, D. E. Lorant, N. Borregaard, G. A. Zimmerman, R. P. McEver, and D. F. Bainton. Leukocyte activation induces surface redistribution of P–selectin glycoprotein ligand–1. J. Leukoc. Biol. 61:489–499, 1997.

    Google Scholar 

  7. Chang, K.–C., D. F. J. Tees, and D. A. Hammer. The state diagram for cell adhesion under flow: Leukocyte rolling and firm adhesion. Proc. Natl. Acad. Sci. U.S.A. 97:11262–11267, 2000.

    Google Scholar 

  8. Chen, S., and T. A. Springer. An automatic braking system that stabilizes leukocyte rolling by an increase in selectin bond number with shear. J. Cell Biol. 94:185–200, 1999.

    Google Scholar 

  9. Chen, S., and T. A. Springer. Selectin receptor–ligand bonds: Formation limited by shear rate and dissociation governed by the Bell model. Proc. Natl. Acad. Sci. U.S.A. 98:950–955, 2001.

    Google Scholar 

  10. Chesla, S. E., P. Li, S. Nagarajan, P. Selvaraj, and C. Zhu. The membrane anchor influences ligand binding two–dimensional kinetic rates and three–dimensional affinity of FcγRIII (CD16). J. Biol. Chem. 275:10235–10246, 2000.

    Google Scholar 

  11. Chesla, S. E., P. Selvaraj, and C. Zhu. Measuring two–dimensional receptor–ligand binding kinetics with micropipette. Biophys. J. 75:1553–1572, 1998.

    Google Scholar 

  12. Cozens–Roberts, C., D. A. Lauffenburger, and J. A. Quinn. Receptor–mediated cell attachment and detachment kinetics. I. Probabilistic model and analysis. Biophys. J. 58:841–856, 1990.

    Google Scholar 

  13. Evans, E. Probing the relation between force, lifetime, and chemistry in single molecular bonds. Annu. Rev. Biophys.Biomol. Struct. 30:105–128, 2001.

    Google Scholar 

  14. Evans, E., D. Berk, and A. Leung. Detachment of agglutinin–bonded red blood cells. I. Forces to rupture molecular–point attachments. Biophys. J. 59:838–848, 1991.

    Google Scholar 

  15. Evans, E., and K. Ritchie. Dynamic strength of molecular adhesion bonds. Biophys. J. 72:1541–1555, 1997.

    Google Scholar 

  16. Evans, E., K. Ritchie, and R. Merkel. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys. J. 68:2580–2587, 1995.

    Google Scholar 

  17. Florin, E. L., V. T. Moy, and H. E. Gaub. Adhesion forces between individual ligand–receptor pairs. Science 264:415–417, 1994.

    Google Scholar 

  18. Grubmüller, H., B. Heymann, and P. Tavan. Ligand binding: Molecular mechanics calculation of the streptavidin–biotin rupture forces. Science 271:997–999, 1996.

    Google Scholar 

  19. Hammer, D. A., and S. M. Apte. Simulation of cell rolling and adhesion on surfaces in shear flow: General results and analysis of selectin–mediated neutrophil adhesion. Biophys. J. 63:35–57, 1992.

    Google Scholar 

  20. Hasslen, S. R., A. R. Burns, S. I. Simon, C. W. Smith, K. Starr, A. N. Barclay, S. A. Michie, R. D. Nelson, and S. L. Erlandsen. Preservation of spatial organization and antigenicity of leukocyte surface molecules by aldehyde fixation: Flow cytometry and high–resolution FESEM studies of CD62L, CD11b, and Thy–1. J. Histochem. Cytochem. 44:1115–1122, 1996.

    Google Scholar 

  21. Izrailev, S., S. Stepaniants, M. Balsera, Y. Oono, and K. Schulten. Molecular dynamics study of unbinding of the avidin–biotin complex. Biophys. J. 72:1568–1581, 1997.

    Google Scholar 

  22. Kaplanski, G., C. Farnarier, O. Tissot, A. Pierres, A.–M. Benoliel, M.–C. Alessi, S. Kaplanski, and P. Bongrad. Granulocyte–endothelium initial adhesion. Analysis of transient binding events mediated by E–selectin in a laminar shear flow. Biophys. J. 64:1922–1933, 1993.

    Google Scholar 

  23. King, M. R., and D. A. Hammer. Multiparticle adhesive dynamics. Interactions between stably rolling cells. Biophys. J. 81:799–813, 2001.

    Google Scholar 

  24. Kuo, S. C., D. A. Hammer, and D. A. Lauffenburger. Simulation of detachment of specifically bound particles from surfaces by shear flow. Biophys. J. 73:517–531, 1997.

    Google Scholar 

  25. Laurenzi, I. J., and S. L. Diamond. Monte Carlo simulation of the heterotypic aggregation kinetics of platelets and neutrophils. Biophys. J. 77:1733–1746, 1999.

    Google Scholar 

  26. Lee, G. U., D. A. Kidwell, and R. J. Colton. Sensing discrete streptavidin–biotin interactions with atomic force microscopy. Langmuir 10:354–357, 1994.

    Google Scholar 

  27. Long, M., H. L. Goldsmith, D. F. Tees, and C. Zhu. Probabilistic modeling of shear–induced formation and breakage of doublets cross–linked by receptor–ligand bonds. Biophys. J. 76:1112–1128, 1999.

    Google Scholar 

  28. Long, M., H. Zhao, K.–S. Huang, and C. Zhu. Kinetic measurements of cell surface E–selectin/carbohydrate ligand interactions. Ann. Biomed. Eng. 29:935–946, 2001.

    Google Scholar 

  29. McQuarrie, D. A. Kinetics of small systems I. J. Chem. Phys. 38:433–436, 1963.

    Google Scholar 

  30. Merkel, R., P. Nassoy, A. Leung, K. Ritchie, and E. Evans. Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature (London) 397:50–53, 1999.

    Google Scholar 

  31. Miyata, H., R. Yasuda, and K. Kinosita. Strength and lifetime of bonds between actin and skeletal muscle alpha–actinin studied with an optical trapping technique. Biochim. Biophys. Acta 1290:83–88, 1996.

    Google Scholar 

  32. Pierres, A., A. M. Benoliel, and P. Bongrand. Measuring the lifetime of bonds made between surface–linked molecules. J. Biol. Chem. 270:26586–26592, 1995.

    Google Scholar 

  33. Pierres, A., A.–M. Benoliel, and P. Bongrand. Initial steps of cell–substrate adhesion. In: Cell Mechanics and Cellular Engineering, edited by V. C. Mow, F. Guilak, R. Tran–Son–Tay, and R. M. Hochmuth. New York: Springer, 1994, pp. 145–159.

    Google Scholar 

  34. Pierres, A., O. Tissot, and P. Bongrand. Analysis of the motion of cells driven along an adhesive surface by a laminar shear flow. In: Studying Cell Adhesion, edited by P. Bongrand, P. Claesson, and A. Curtis. Heidelberg: Springer, 1994, pp. 157–174.

    Google Scholar 

  35. Piper, J. W., R. A. Swerlick, and C. Zhu. Determining force dependence of two–dimensional receptor–ligand binding affinity by centrifugation. Biophys. J. 74:492–513, 1998.

    Google Scholar 

  36. Ramachandran, V., M. U. Nollert, H. Qiu, W. J. Liu, R. D. Cummings, C. Zhu, and R. P. McEver. Tyrosine replacement in P–selectin glycoprotein ligand–1 affects distinct kinetic and mechanical properties of bonds with P–and L–selectin. Proc. Natl. Acad. Sci. U.S.A. 96:13771–13776, 1999.

    Google Scholar 

  37. Ramachandran, V., T. Yago, T. K. Epperson, M. Kobzdej, M. U. Nollert, R. D. Cummings, C. Zhu, and R. P. McEver. Dimerization of a selectin and its ligand stabilizes cell rolling and enhances tether strength in shear flow. Proc. Natl. Acad. Sci. U.S.A. 98:10166–10171, 2001.

    Google Scholar 

  38. Shao, J. Y., and R. M. Hochmuth. Micropipette suction for measuring pico–Newton forces of adhesion and tether formation from neutrophil membranes. Biophys. J. 71:2892–2901, 1996.

    Google Scholar 

  39. Shao, J. Y., and R. M. Hochmuth. Mechanical anchoring strength of L–selectin, beta2 integrins, and CD45 to neutrophil cytoskeleton and membrane. Biophys. J. 77:587–596, 1999.

    Google Scholar 

  40. Smith, M. J., E. L. Berg, and M. B. Lawrence. A direct comparison of selectin–mediated transient, adhesive events using high temporal resolution. Biophys. J. 77:3371–3383, 1999.

    Google Scholar 

  41. Tees, D. F., O. Coenen, and H. L. Goldsmith. Interaction forces between red cells agglutinated by antibody. IV. Time and force dependence of breakup. Biophys. J. 65:1318–1334, 1993.

    Google Scholar 

  42. Tees, D. F. J., R. E. Waugh, and D. A. Hammer. A microcantilever device to assess the effect of force on the lifetime of selectin–carbohydrate bonds. Biophys. J. 80:668–682, 2001.

    Google Scholar 

  43. Tha, S. P., J. Shuster, and H. L. Goldsmith. Interaction forces between red cells agglutinated by antibody. II. Measurement of hydrodynamic force of breakup. Biophys. J. 50:1117–1126, 1986.

    Google Scholar 

  44. Thoumine, O., P. Kocian, A. Kottelat, and J. J. Meister. Short–term binding of fibroblasts to fibronectin: Optical tweezers experiments and probabilistic analysis. Eur. Biophys. J. 29:398–408, 2000.

    Google Scholar 

  45. van Kooyk, Y., P. Weder, K. Heije, and C. G. Figdor. Extracellular calcium modulates leukocyte function–associated antigen–1 cell surface distribution on T lymphocytes and consequently affects cell adhesion. J. Cell Biol. 124:1061–1070, 1994.

    Google Scholar 

  46. Vijayendran, R., D. Hammer, and D. Leckband. Simulations of the adhesion between molecularly bonded surfaces in direct force measurements. J. Chem. Phys. 108:7783–7793, 1998.

    Google Scholar 

  47. von Andrian, U. H., S. R. Hasslen, R. D. Nelson, S. L. Erlandsen, and E. C. Butcher. A central role for microvillous receptor presentation in leukocyte adhesion under flow. Cell 82:989–999, 1995.

    Google Scholar 

  48. Williams, J. M., T. Han, and T. P. J. Beebe. Determination of single–bond forces from contact force variances in atomic force microscopy. Langmuir 12:1291–1295, 1996.

    Google Scholar 

  49. Williams, T. E., S. Nagarajan, P. Selvaraj, and C. Zhu. Concurrent binding to multiple receptors: Kinetic rates of CD16b and CD32a for IgG. Biophys. J. 79:1867–1875, 2000.

    Google Scholar 

  50. Williams, T. E., S. Nagarajan, P. Selvaraj, and C. Zhu. Quantifying the impact of membrane microtopology on effective two–dimensional affinity. J. Biol. Chem. 276:13283–13288, 2001.

    Google Scholar 

  51. Williams, T. E., and C. Zhu. Concurrent binding to multiple ligands: Kinetic rates of CD16b for membrane–bound IgG1 and IgG2. Biophys. J. 79:1858–1866, 2000.

    Google Scholar 

  52. Yap, A. S., W. M. Brieher, M. Priushy, and B. M. Gumbiner. Lateral clustering of the adhesive ectodomain: A fundamental determinant of cadherin function. Curr. Biol. 7:308–315, 1997.

    Google Scholar 

  53. Zhu, C., G. Bao, and N. Wang. Cell mechanics: Mechanical response, cell adhesion, and molecular deformation. Annu. Rev. Biomed. Eng. 2:189–226, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, C., Long, M., Chesla, S.E. et al. Measuring Receptor/Ligand Interaction at the Single-Bond Level: Experimental and Interpretative Issues. Annals of Biomedical Engineering 30, 305–314 (2002). https://doi.org/10.1114/1.1467923

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1467923

Navigation