Skip to main content
Log in

Phase Shifting Prior to Spatial Filtering Enhances Optical Recordings of Cardiac Action Potential Propagation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Optical imaging of cardiac electrical activity using a voltage-sensitive dye provides high spatial resolution maps of action potential propagation and repolarization. Charge-coupled-device (CCD) camera-based imaging systems, however, are limited by their low signal-to-noise ratio. We have developed an image processing method to enhance the quality of optical signals recorded using a CCD camera. The method is based on the observation that within a small neighborhood of adjacent pixels, the morphology of the optical action potential varies little except for a phase shift in time resulting from the propagation of the wavefront. The method uses a phase-correlation technique to first correct for this time shift before spatially filtering with a 5 × 5 Gaussian convolution kernel (Σ =1.179). A length 5 median filter is then applied to further reduce noise by filtering in the temporal domain. The image-processing scheme allows for more accurate extraction of maps of electrical activation, repolarization, and action potential duration. © 2001 Biomedical Engineering Society.

PAC01: 8780Tq, 8719Hh, 8719Nn, 8757Ce

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Baxter, W. T., J. M. Davidenko., L. M. Loew., J. P. Wuskell., and J. Jalife. Technical features of a CCD video camera system to record cardiac fluorescence data. Ann. Biomed. Eng.25.:713–725., 1997.

    Google Scholar 

  2. De Castro, E., and C. Morandi. Registration of translated and rotated images using finite Fourier transforms. IEEE Trans. Pattern Anal. Mach. Intell.PAMI-9.:700–703., 1987.

    Google Scholar 

  3. Efimov, I. R., G. J. Fahy., Y. Cheng., D. R. Van Wagoner., P. J. Tchou., and T. N. Mazgalev. High-resolution fluorescent imaging does not reveal a distinct atrioventricular nodal anterior input channel (fast pathway) in the rabbit heart during sinus rhythm. J. Cardiovasc. Electrophys.8.:295–306., 1997.

    Google Scholar 

  4. Efimov, I. R., D. T. Huang., J. M. Rendt., and G. Salama. Optical mapping of repolarization and refractoriness from intact hearts. Circulation.90.:1469–1480., 1994.

    Google Scholar 

  5. Girouard, S. D., K. R. Laurita., and D. S. Rosenbaum. Unique properties of cardiac action potentials recorded with voltage-sensitive dyes. J. Cardiovasc. Electrophys.7.:1024–1038., 1996.

    Google Scholar 

  6. Girouard, S. D., J. M. Pastore., K. R. Laurita., K. W. Gregory., and D. S. Rosenbaum. Optical mapping in a new guinea pig model of ventricular tachycardia reveals mechanisms for multiple wavelengths in a single reentrant circuit. Circulation.93.:603–613., 1996.

    Google Scholar 

  7. Gray, R. A., J. Jalife., A. Panfilov., W. T. Baxter., C. Cabo., J. M. Davidenko., and A. M. Pertsov. Nonstationary vortexlike reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart. Circulation.91.:2454–2469., 1995.

    Google Scholar 

  8. Gray, R. A., A. M. Pertsov., and J. Jalife. Incomplete reentry and epicardial breakthrough patterns during atrial fibrillation in the sheep heart. Circulation.94.:2649–2661., 1996.

    Google Scholar 

  9. Knapp, C. H., and G. C. Carter. The generalized correlation method for estimation of time delay. IEEE Trans. Acoust., Speech, Signal Process.24.:320–327., 1976.

    Google Scholar 

  10. Knisley, S. B..Transmembrane voltage changes during unipolar stimulation of rabbit ventricle. Circ. Res.77.:1229–1239., 1995.

    Google Scholar 

  11. Kuglin, C. D., and D. C. Hines. The phase correlation image alignment method. Proceedings of the 1975 International Conference on Cybernetics and Society. San Francisco, CA: IEEE, 1975, pp. 163–165.

    Google Scholar 

  12. Loew, L. M..Potentiometric dyes: Imaging electrical activity of cell membranes. Pure Appl. Chem.68.:1405–1409., 1996.

    Google Scholar 

  13. Ni, Q., R. S. MacLeod., R. L. Lux., and B. Taccardi. A novel interpolation method for electric potential fields in the heart during excitation. Ann. Biomed. Eng.26.:597–607., 1998.

    Google Scholar 

  14. Pertsov, A. M., J. M. Davidenko., R. Salomonsz., W. T. Baxter., and J. Jalife. Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle. Circ. Res.72.:631–650., 1993.

    Google Scholar 

  15. Reiter, M. J., M. Landers., Z. Zetelaki., C. J. H. Kirchhof., and M. A. Allessie. Electrophysiological effects of acute dilation in the isolated rabbit heart: Cycle length-dependent effects on ventricular refractoriness and conduction velocity. Circulation.96.:4050–4056., 1997.

    Google Scholar 

  16. Rogers, J. M., and A. D. McCulloch. Nonuniform muscle fiber orientation causes spiral wave drift in a finite element model of cardiac action potential propagation. J. Cardiovasc. Electrophysiol.5.:496–509., 1994.

    Google Scholar 

  17. Rohr, S., and B. M. Salzberg. Multiple site optical recording of transmembrane voltage (MSORTV) in patterned growth heart cell cultures: Assessing electrical behavior, with microsecond resolution, on a cellular and subcellular scale. Biophys. J.67.:1301–1315., 1994.

    Google Scholar 

  18. Sung, D., J. H. Omens., and A. D. McCulloch. Model-based analysis of optically mapped epicardial activation patterns and conduction velocity. Ann. Biomed. Eng.28.:1085–1092., 2000.

    Google Scholar 

  19. Windisch, H., H. Ahammer., P. Schaffer., W. Muller., and D. Platzer. Optical multisite monitoring of cell excitation phenomena in isolated cardiomyocytes. Pflugers Arch.430.:508–518., 1995.

    Google Scholar 

  20. Witkowski, F. X., L. J. Leon., R. B. Clark., M. L. Spano., W. L. Ditto., and W. R. Giles. A method for visualization of ventricular fibrillation: Design of a cooled fiberoptically coupled image intensified CCD data acquisition system incorporating wavelet shrinkage based adaptive filtering. Chaos.8.:94–102., 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sung, D., Somayajula-Jagai, J., Cosman, P. et al. Phase Shifting Prior to Spatial Filtering Enhances Optical Recordings of Cardiac Action Potential Propagation. Annals of Biomedical Engineering 29, 854–861 (2001). https://doi.org/10.1114/1.1408927

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1408927

Navigation