Acta Univ. Agric. Silvic. Mendelianae Brun. 2015, 63(3), 793-801 | DOI: 10.11118/actaun201563030793

Usage of Geoprocessing Services in Precision Forestry for Wood Volume Calculation and Wind Risk Assessment

Tomáš Mikita, Petr Balogh
Department of Geoinformation Technologies, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic

This paper outlines the idea of a precision forestry tool for optimizing clearcut size and shape within the process of forest recovery and its publishing in the form of a web processing service for forest owners on the Internet. The designed tool titled COWRAS (Clearcut Optimization and Wind Risk Assessment) is developed for optimization of clearcuts (their location, shape, size, and orientation) with subsequent wind risk assessment. The tool primarily works with airborne LiDAR data previously processed to the form of a digital surface model (DSM) and a digital elevation model (DEM). In the first step, the growing stock on the planned clearcut determined by its location and area in feature class is calculated (by the method of individual tree detection). Subsequently tree heights from canopy height model (CHM) are extracted and then diameters at breast height (DBH) and wood volume using the regressions are calculated. Information about wood volume of each tree in the clearcut is exported and summarized in a table. In the next step, all trees in the clearcut are removed and a new DSM without trees in the clearcut is generated. This canopy model subsequently serves as an input for evaluation of wind risk damage by the MAXTOPEX tool (Mikita et al., 2012). In the final raster, predisposition of uncovered forest stand edges (around the clearcut) to wind risk is calculated based on this analysis. The entire tool works in the background of ArcGIS server as a spatial decision support system for foresters.

Keywords: wind risk, canopy height model, ALS, LiDAR, geoprocessing
Grants and funding:

This article was prepared as a part of the research project of Faculty of Forestry and Wood Technology of Mendel University in Brno IGA 40/2013 "Geobiocoenological map of agricultural landscape - usage of multivariate statistical methods".

Prepublished online: June 28, 2015; Published: August 1, 2015  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Mikita, T., & Balogh, P. (2015). Usage of Geoprocessing Services in Precision Forestry for Wood Volume Calculation and Wind Risk Assessment. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis63(3), 793-801. doi: 10.11118/actaun201563030793
Download citation

References

  1. BALTSAVIAS, E. P. 1999. Airborne laser scanning: existing systems and firms and other resources. Journal of Photogrammetry and Remote Sensing, 54(2-3): 164-198. DOI: 10.1016/S0924-2716(99)00016-7 Go to original source...
  2. BLENNOW, K. and SALLNAS, O. 2004. WINDA - a system of models for assessing the probability of wind damage to forest stands within a landscape. Ecol. Model., 175: 87-99. DOI: 10.1016/j.ecolmodel.2003.10.009 Go to original source...
  3. BOOSE, E. R., FOSTER, D. R., FLUET, M. 1994. Hurricane Impacts to Tropical and Temperate Forest Landscapes. Ecological Monographs, 64(4): 369-400. DOI: 10.2307/2937142 Go to original source...
  4. BURTON, P. J. 2001. Windthrow patterns on cutblock edges and in retention patches in the SBSmc. In: MITCHELL, S. J., RODNEY, J. (eds.), Proceedings of the Windthrow Researchers Workshop. Richmond, BC, January 31-February 1, 2001, 9-31.
  5. BYRNE, K. E. and MITCHELL, S. J. 2007. Overturning resistance of western red cedar and western hemlock in mixed species stands in coastal British Columbia. Canadian Journal of Forest Research, 37: 931-939. DOI: 10.1139/X06-291 Go to original source...
  6. CHAPMAN, L. 2000. Assessing topographic exposure. Meteorological Applications, 7: 335-340. DOI: 10.1017/S1350482700001729 Go to original source...
  7. DYCK, B. 2001. Precision forestry - The path to increased profitability. In: Proceedings of the first international precision forestry cooperative symposium. Washington, 4-8.
  8. ESRI. 2013. What is a geoprocessing service? [Online]. Available on URL http://resources.arcgis.com/en/help/main/10.1/index.html#//00570000005w000000. [cit 2013-11-29].
  9. FALKOWSKI, M., SMITH, A., GESSLER, P., HUDAK, A., VIERLING, L., EVANS, J. 2008. The influence of the conifer forest canopy cover on the accuracy of two individual tree detection algorithms using lidar data. Canadian Journal of Remote Sensing, 34: 1-13. DOI: 10.5589/m08-055 Go to original source...
  10. GARDINER, B., BYRNE, K., HALE, S., KAMIMURA, K., MITCHELL, S. J., PELTOLA, H., RUEL, J. C. 2008. A review of mechanistic modelling of wind damage risk to forests. Forestry, 81: 447-463. DOI: 10.1093/forestry/cpn022 Go to original source...
  11. GARDINER, B. A., QUINE, C. P. 2000. Management of forests to reduce the risk of abiotic damage-a review with particular reference to the effects of strong winds. Forest Ecology and Management, 135: 261-277. DOI: 10.1016/S0378-1127(00)00285-1 Go to original source...
  12. HOLOPAINEN, M., MÄKINEN, A., RASINMÄKI, J., HYYPPÄ, J., HYYPPÄ, H., KAARTINEN, H., VIITALA, R., VASTARANTA, M., KANGAS, A. 2010. Effect of tree level airborne laser scanning accuracy on the timing and expected value of harvest decisions. European Journal of Forest Research, 29: 899-910. DOI: 10.1007/s10342-009-0282-6 Go to original source...
  13. KAARTINEN, H., HYYPPÄ, J. 2008. EuroSDR/ISPRS Project, Commission II "Tree Extraction"; Final Report; Official Publication 53; EuroSDR (European Spatial Data Research). Dublin, Ireland.
  14. KERZENMACHER, T., GARDINER, B. A. 1998. A mathematical model to describe the dynamic response of a spruce tree to the wind. Trees, 12: 385-394. DOI: 10.1007/s004680050165 Go to original source...
  15. LANQUAYE, C. O., MITCHELL, S. J. 2005. Portability of stand-level empirical windthrow risk models. Forest Ecology and Management, 216: 134-148. DOI: 10.1016/j.foreco.2005.05.032 Go to original source...
  16. LOHMANDER, P., HELLES, F. 1987. Windthrow probability as a function of stand characteristics and shelter. Scandiavian Journal of Forest Research, 2: 227-238. DOI: 10.1080/02827588709382460 Go to original source...
  17. MIKITA, T., KLIMÁNEK, M., KOLEJKA, J. 2012. Usage of multidimensional statistic methods with MAXTOPEX factor for Windthrow risk assessment. Allgemeine Forst und Jagdzeitung, 183(3-4): 63-74.
  18. MIKITA, T., KLIMÁNEK, M., CIBULKA, M. 2013. Evaluation of airborne laser scanning data for tree parameters and terrain modelling in forest environment. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61(5): 1339-1347. DOI: 10.11118/actaun201361051339 Go to original source...
  19. NOVAK, M. D., WARLAND, J. S., ORCHANSKY, A. L., KETLER, R., GREEN, S. 2000. Wind tunnel and field measurements of turbulent flow in forests. Part I. Uniformly thinned stands. Boundary-Layer Meteorology, 95: 457-495. DOI: 10.1023/A:1002693625637 Go to original source...
  20. OGC. 2013. OpenGIS® Web Service Common Implementation Specification version 1.1.0 with Corrigendum 1. [Online]. Available at: http://portal.opengeospatial.org/files/?artifact_id=20040. [cit 2013-11-29].
  21. PELTOLA, H., KELLOMÄKI, S., VAISANEN, H. and IKONEN, V. P. 1999. A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of Scots pine, Norway spruce, and birch. Canadian Journal of Forest Research, 29: 647-661. DOI: 10.1139/x99-029 Go to original source...
  22. PELTOLA, H. and KELLOMÄKI, S. 1993. A mechanistic model for calculating windthrow and stem breakage at stand edge. Silva Fenn, 27(2): 99-111. DOI: 10.14214/sf.a15665 Go to original source...
  23. PETRÁŠ, R., PAJTÍK, J. 1991. Sústava československých objemových tabuliek drevín. Lesnícky časopis, 37(1): 49-56.
  24. RUEL, J.-C. 1995. Understanding windthrow. Silvicultural implications. Forestry Chronicle, 71: 434-444. DOI: 10.5558/tfc71434-4 Go to original source...
  25. SAČKOV, I., NATOV, P., MESSINGEROVÁ, V. 2008. On-line calculator of volume and price extraction of above the ground dendromass from forest stand. Forestry Journal, 54(1): 75-85.
  26. SEQUENS, J. 2007. Hospodářská úprava lesa. Česká zemědělská univerzita v Praze.
  27. SMREČEK, R., DANIHELOVÁ, Z. 2013. Forest stand height determination from low point density airborne laser scanning data in Rožňava Forest enterprise zone (Slovakia). iForest, 6: 48-54. DOI: 10.3832/ifor0767-006 Go to original source...
  28. SCOTT, R. E. and MITCHELL, S. J. 2005. Empirical modelling of windthrow risk in partially harvested stands using tree, neighbourhood, and stand attributes. Forest Ecology and Management, 218: 193-209. DOI: 10.1016/j.foreco.2005.07.012 Go to original source...
  29. VALINGER, E. and FRIDMAN, J. 1997. Modelling the probability of snow and wind damage in Scots pine stands using tree characteristics. Forest Ecology and Management, 97: 215-222. DOI: 10.1016/S0378-1127(97)00062-5 Go to original source...
  30. VASTARANTA, M., HOLOPAINEN, M., YU, X., HYYPPÄ, J., MÄKINEN, A., RASINMÄKI, J., MELKAS, T., KAARTINEN, H., HYYPPÄ, H. 2011. Effects of ALS individual tree detection error sources on forest management planning calculations. Remote Sensing, 3: 1614-1626. DOI: 10.3390/rs3081614 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.