Skip to main content
Log in

Use of fluorescently labeled caspase inhibitors as affinity labels to detect activated caspases

  • Review
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Activation of caspases is the key event of apoptosis and different approaches were developed to assay it To detect their activation in situ, we applied fluorochrome labeled inhibitors of caspases (FLICA) as affinity labels of active centers of these enzymes. The FLlCA ligands are fluorescein or sulforhodamine conjugated peptide-fluoromethyl ketones that covalently bind to enzymatic centers of caspases with 1:l stoichiometry. The specificity of FLICA towards individual caspases is provided by the peptide sequence of amino acids. Exposure of live cells to FLICA results in uptake of these ligands and their binding to activated caspases; unbound FLICA is removed by cell rinse. Cells labeled with FLICA can be examined by fluorescence microscopy or subjected to quantitative analysis by cytometry. Intracellular binding sites of FLICA are consistent with known localization of caspases. Covalent binding of FLICA allowed us to identify the labeled proteins by immunoblotting: the proteins that bound individual FLICAs had molecular weight between 17 and 22 kDa, which corresponds to large subunits of the caspases. Detection of caspases activation by FLICA can be combined with other markers of apoptosis or cell cycle for multiparametric analysis. Because FLICA are caspase inhibitors they arrest the process of apoptosis preventing cell disintegration. The stathmo-apoptotic method was developed, therefore, that allows one to assay cumulative apoptotic index over long period of time and estimate the rate of cell entry into apoptosis for large cell populations. FLICA offers a rapid and convenient assay of caspases activation and can also be used to accurately estimate the incidence of apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alnemri ES, Livingston DI, Nicholson DW et al: Human ICE/CED-4 protease nomenclature. Cell 87: 171–173, 1996.

    Article  PubMed  CAS  Google Scholar 

  2. Kaufmann SH, Desnoyers S, Ottaviano Y et al: Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 53: 37–3985, 1993.

    Google Scholar 

  3. Lazebnik YA, Kaufmann SH, Desnoyers S et al: Cleavage of poly(ADP-ribose) polymerase by proteinase with properties like ICE. Nature 371: 346–347, 1994.

    Article  PubMed  CAS  Google Scholar 

  4. Budihardjo I, Oliver H, Lutter M et al: Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15: 269–290, 1999

    Article  PubMed  CAS  Google Scholar 

  5. Earnshaw WC, Martins LM, Kaufmann SH: Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68: 383–424, 1999.

    Article  PubMed  CAS  Google Scholar 

  6. Nicholson, DW. Caspase structure, proteolytic substrates and function during apoptotic cell death. Cell Death Differ 6: 1028–1042, 1999.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang TS, Hunort S, Kuida K et al: Caspase knockouts: matters of life and death. Cell Death Differ 6: 1043–1053, 1999.

    Article  Google Scholar 

  8. Stennicke HR Salvesen GS: Catalytic properties of caspases. Cell Death Differ 6: 1060–1066, 1999.

    Article  Google Scholar 

  9. Zhivotovsky B, Samali A, Gahm A et al: Caspases: their intracellular localization and translocation during apoptosis. Cell Death Differ 6: 644–651, 1999.

    Article  PubMed  CAS  Google Scholar 

  10. Li X, Darzynkiewicz Z: Cleavage of poly(ADP-ribose) polymerase measured in situ in individual cells: relationship to DNA fragmentation and cell cycle position during apoptosis. Exp Cell Res 255: 125–132, 2000.

    Article  PubMed  CAS  Google Scholar 

  11. Li X, Du L, Darzynkiewicz Z: During apoptosis of HL-60 and U-937 cells caspases are activated independently of dissipation of mitochondria1 electrochemical potential. Exp Cell Res 257: 290–297, 2000.

    Article  PubMed  CAS  Google Scholar 

  12. Tanaka M, Momoi T, Marunouchi T: In situ detection of activated caspase-3 in apoptotic granule neurons in the developing cerebellum in slice cultures and in vivo. Brain Res Dev Brain Res; 121: 223–228, 2000.

    Article  PubMed  CAS  Google Scholar 

  13. Gorman AM, Hirt UA, Zhivotovsky B et al: Application of a fluorometric assay to detect caspase activity in thymus tissue undergoing apoptosis in vivo. J Immunol Methods; 226: 43–48, 1999.

    Article  PubMed  CAS  Google Scholar 

  14. Liu J, Bhalgat M, Zhang C et al: Fluorescent molecular probes V a sensitive caspase-3 substrate for fluorometric assays. Bioorg Med Chem Lett 9: 3231–3236, 1999.

    Article  PubMed  CAS  Google Scholar 

  15. Hug H, Los M, Hirt W et al: Rhodamine 110-linked amino acids and peptides as substrates to measure caspase activity upon apoptosis induction in intact cells. Biochemistry 38: 13906–13911, 1999.

    Article  PubMed  CAS  Google Scholar 

  16. Komoriya A, Packard BZ, Brown MJ et al: Assessment of caspase activities in intact apoptotic thymocytes using cell-permeable fluorogenic caspase substrates. J Exp Med 191: 1819–1828, 2000.

    Article  PubMed  CAS  Google Scholar 

  17. Belloc F, Belaund-Rotureau MA, Lavignolle V et al Flow cytometry of caspase-3 activation in preapoptotic leukemic cells. Cytometry 40: 151–160, 2000.

    Article  PubMed  CAS  Google Scholar 

  18. Jones J, Heim JR, Hare E et al: Development and application of a GFP-FRET intracellular caspase assay for drug screening. J Biomol Screen 5: 307–318, 2000.

    Article  PubMed  CAS  Google Scholar 

  19. Morgan MJ, Thorburn A: Measurement of caspase activity in individual cells reveals differences in the kinetics of caspase activation between cells. Cell Growth Differ 8: 38–43, 2001.

    Article  CAS  Google Scholar 

  20. Bedner E, Smolewski P, Amstad P et al: Activation of caspases measured in situ by binding of fluorochrome-labeled inhibitors of caspases (FLICA): correlation with DNA fragmentation. Exp Cell Res 260: 308–313, 2000

    Article  Google Scholar 

  21. Smolewski P, Bedner E, Du L et al: Detection of caspases activation by fluorochrome-labeled inhibitors: Multiparameter analysis by laser scanning cytometry. Cytometry 2001; 44: 73–82.

    Article  PubMed  CAS  Google Scholar 

  22. Amstad PA, Yu G, Johnson GL et al: Detection of caspase activation in situ by fluorochrome-labeled caspase inhibitors. Biotechniques 31: 608–616, 2001.

    PubMed  CAS  Google Scholar 

  23. Ostrowski K, Barnard E, Darzynkiewicz Z: Localization of acetylcholinesterase activity using a 34-labeled irreversible inhibitor. Exp Cell Res 31: 8999, 1963.

    Article  Google Scholar 

  24. Darzynkiewicz Z, Barnard, EA: Specific proteases of mast cells. Nature 213: 1198–1203, 1967.

    Article  CAS  Google Scholar 

  25. Darzynkiewicz Z, Rogers AW, Barnard EA et al: Autoradiography with tritiated methotrexate and the cellular distribution of folate reductase. Science 131: 1538–1530, 1966.

    Google Scholar 

  26. Kunstle G, Leist M, Uhlig S et al: ICE-protease inhibitors block murine liver injury and apoptosis caused by CD95 or by TNF-alpha. Immunol Let 55: 511, 1997.

    Article  Google Scholar 

  27. Ekert PG, Silke J, Vaux DL Caspase inhibitors. Cell Death Differ 6: 1081–1086, 1999.

    Article  PubMed  CAS  Google Scholar 

  28. Thornberry NA, Peterson EP, Zhao JJ et al: Inactivation of interleukin-1 beta converting enzyme by peptide (acyloxy)methyl ketones. Biochemistry 33: 3934–3940, 1994.

    Article  PubMed  CAS  Google Scholar 

  29. Garcia-Calvo, M, Peterson EP, Leiting B et al: Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem 273: 32608–32613, 1998.

    Article  PubMed  CAS  Google Scholar 

  30. Kamentsky LA, Burger DE, Gershman RJ et al: Slide-based laser scanning cytometry. Acta Cytol 41: 123–143, 1997.

    PubMed  CAS  Google Scholar 

  31. Darzynkiewicz Z, Bedner E, Li X et al: Laser scanning cytometry. A new instrumentation with many applications. Exp Cell Res 249: 1–12, 1999.

    Article  PubMed  CAS  Google Scholar 

  32. Thornberry NA, Rano TA, Peterson EP et al: A combinatorial approach defines specificities of members of the caspase family and granzyme B. J Biol Chem 272: 17907–17911, 1997.

    Article  PubMed  CAS  Google Scholar 

  33. Mancini M, Nicholson DW, Roy S et al: The caspase-3 precursor has a cytosolic and mitochondria1 distribution: implications for apoptotic signaling. J Cell Biol 140: 1485–1495, 1998.

    Article  PubMed  CAS  Google Scholar 

  34. Susin SA, Lorenzo HK, Zamzani N et al: Mitochondria1 release of caspase-2 and -9 during apoptotic process. J Exp Med 189: 381–393, 1999.

    Article  PubMed  CAS  Google Scholar 

  35. Collusi PA, Harvey NL, Kumar S: Prodomain-dependent nuclear localization of the caspase-2 (Nedd-2) precursor. A novel function for a caspase prodomain. J Biol Chem 273: 24535–24542, 1998.

    Article  Google Scholar 

  36. Mao PL, Jiang Y, Wee BY et al: Activation of caspase-1 in the nucleus requires nuclear translocation of pro-caspase-1 mediated by its prodomain. J Biol Chem 273: 23621–23624, 1998.

    Article  PubMed  CAS  Google Scholar 

  37. Ritter PM, Marti A, Blanc C et al: Nuclear 1ocaIization of procaspase-9 and processing by caspase-3-like activity to mammary epithelial cells. Eur J Cell Biol 79: 358–364, 2000.

    Article  PubMed  CAS  Google Scholar 

  38. Imazawa T, Nishikawa A, Tada M et al: Nucleolar segregation as an early marker for DNA damage; an experimental study in rats treated with 4-hydroxyaminoquinolone 1-oxide. Virchows Arch 426: 295–300, 1995.

    Article  PubMed  CAS  Google Scholar 

  39. Raipert S, Bennion G, Hickman JA et al: Nucleolar segregation during apoptosis of hematopoietic stem cell line FDCP-Mix. Cell Death Differ 6: 334–341, 1999.

    Article  Google Scholar 

  40. Miller ML, Andriga A, Dixon K et al: Insights into W-induced apoptosis: ultrastructure, trichrome staining and spectral imaging. Micron 33: 157–166, 2002.

    Article  PubMed  CAS  Google Scholar 

  41. Horky M, Wurzer G, Kotala V et al: Segregation of nucleolar components coincides with caspase-3 activation in cisplatin-treated HeLa cells. J Cell Sci 114: 663–670, 2001.

    PubMed  CAS  Google Scholar 

  42. Halicka HD, Bedner E, Darzynkiewicz Z: Segregation of RNA and separate packaging of DNA and RNA in apoptotic bodies during apoptosis. Exp Cell Res 260: 248–256, 2000.

    Article  PubMed  CAS  Google Scholar 

  43. Torres-Montaner A, Bolivar J, Astole A et al: Immunohistochemical detection of ribosomal transcription factor UBF and AgNOR staining identify apoptotic events in neoplastic cells of Hodgkin’s disease and in other lymphoid cells. J Histochem Cytochem 48: 1521–1530, 2000.

    Article  PubMed  CAS  Google Scholar 

  44. Takahashi A, Hirata H, Yonehara S et al: Affinity labeling displays the stepwise activation of ICE-related proteases by Fas, staurosporine and CrmA-sensitive caspase-8. Oncogene 14: 2741–2752; 1997.

    Article  PubMed  CAS  Google Scholar 

  45. Johnson DE: Noncaspase proteases in apoptosis. Leukemia, 14: 1695–1703, 2000.

    Article  PubMed  CAS  Google Scholar 

  46. Faleiro L, Kobayashi R, Fearnhead H, Lazebnik Y Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells. EMBO Journal 16: 2271–2281; 1997.

    Article  PubMed  CAS  Google Scholar 

  47. Chow S, Slle E, MacFarlane M et al: Caspase-1 is not involved in CD95/Fas-induced apoptosis in Jurkat cells. Exp Cell Res 246: 491–500; 1999.

    Article  PubMed  CAS  Google Scholar 

  48. Darzynkiewicz Z, Bruno S, Del Bino G et al: Features of apoptotic cells measured by flow cytometry. Cytometry 13: 795–808, 1992.

    Article  PubMed  CAS  Google Scholar 

  49. Smolewski P, Grabarek J, Halicka HD et al: Assay of caspases activation in situ combined with probing plasma membrane integrity detects three distinct stages of apoptosis. J Immunol Meth 2002

  50. Darzynkiewicz Z, Juan G, Li X et al: Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry 27: 1–20, 1997.

    Article  PubMed  CAS  Google Scholar 

  51. Majno G, Joris I. Apoptosis, oncosis and necrosis. An overview of cell death. Am J Pathol 146: 316, 1995.

    Google Scholar 

  52. Vermes I, Haanen C, Reutelingsperger C: Flow cytometry of apoptotic cell death. J Immunol Meth 243: 167–190, 2000.

    Article  CAS  Google Scholar 

  53. Harter L, Keel M, Hentze H et al: Spontaneous in contrast to CD95induced neutrophil apoptosis is independent of caspase activity. J Trauma 50: 982–88, 2001.

    Article  PubMed  CAS  Google Scholar 

  54. Qi L, Sit KH. CpG-specific common commitment in caspase-dependent and -independent cell death. Mol Cell Biol Res Commun 3: 33–41, 2000.

    Article  PubMed  CAS  Google Scholar 

  55. Gorczyca W, Bruno S, Darzynkiewicz RJ et al: DNA strand breaks occurring during apoptosis: their early in situ detection by the terminal deoxynucleotidyl transferase and nick translation assays and prevention by serine protease inhibitors. Int J Oncol 1: 639–648, 1992.

    PubMed  CAS  Google Scholar 

  56. Kerr JFR, Wyllie AH, Curie AFt Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257, 1972.

    Article  PubMed  CAS  Google Scholar 

  57. Kerr JFR, Winterford CM, Harmon V Apoptosis. Its significance in cancer and cancer therapy. Cancer 73: 2013–2026, 1994.

    Article  PubMed  CAS  Google Scholar 

  58. Del Bino G, Darzynkiewicz Z, Degraef C et al: Comparison of methods based on annexin V binding, DNA content or TUNEL for evaluating cell death in HL-60 and adherent MCF-7 cells. Cell Prolif 32: 25–37, 1999.

    Article  PubMed  CAS  Google Scholar 

  59. Hara S, Halicka HD, Bruno S et al: Effect of protease inhibitors on early events of apoptosis. Exp Cell Res 232: 372–384, 1996.

    Article  Google Scholar 

  60. Smolewski P, Grabarek J, Phelps DJ et al: Stathmoapoptosis: arresting apoptosis by fluorochrome-labeled inhibitor of caspases. Int J Oncol 19: 657–663, 2001.

    PubMed  CAS  Google Scholar 

  61. Darzynkiewicz Z, Traganos F, Kimmel M: Assay of cell cycle kinetics by multivariate flow cytometry using the principle of stathmokinesis. In: Techniques in Cell Cycle Analysis. JW Gray and Z Darzynkiewicz Eds. Humana Press, Clifton, NJ, USA, 1997, pp. 291–336.

    Google Scholar 

  62. Del Bino G, Lassota P, Darzynkiewicz Z: The S-phase cytotoxicity of camptothecin. Exp Cell Res 193: 27–35, 1991.

    Article  PubMed  Google Scholar 

  63. Deptala A, Li X, Bedner E et al: Differences in induction of p53, p21WAF1 and apoptosis in relation to cell cycle phase of MCF-7 cells treated with camptothecin. Int J Oncol 15: 861–871, 1999.

    PubMed  CAS  Google Scholar 

  64. Liu LF, Duann P, Lin C-P et al: Mechanism of action of camptothecin. Ann NY Acad Sci 803: 44–49, 1996.

    Article  PubMed  CAS  Google Scholar 

  65. Gorczyca W, Bigman K, Mittelman A et al: Induction of DNA strand breaks associated with apoptosis during treatment of leukemias. Leukemia 7: 659–670, 1993.

    PubMed  CAS  Google Scholar 

  66. Grabarek J, Johnson GL, Lee BW et al: Sequential activation of caspases and serine proteases (serpases) during apoptosis. Cell Cycle 1: 2002 (in press)

  67. Grabarek, J, Dragan M, Lee BW et al: Activation of chymotrypsin-like serine protease(s) during apoptosis detected by affinity-labeling of the enzymatic center with fluoresceinated inhibitor. Int J Oncol 20: 225–233, 2002.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Darzynkiewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabarek, J., Amstad, P. & Darzynkiewicz, Z. Use of fluorescently labeled caspase inhibitors as affinity labels to detect activated caspases. Hum Cell 15, 1–12 (2002). https://doi.org/10.1111/j.1749-0774.2002.tb00094.x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1749-0774.2002.tb00094.x

Key words

Navigation