Skip to main content
Log in

Three cone opsin genes and cone cell arrangement in retina of juvenile Pacific bluefin tuna Thunnus orientalis

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

In bluefin tuna aquaculture, collision of juveniles with the tank or net walls is a major cause of high mortality. This problem may be related to color sensibility of the visual mechanisms of this species. As a first step in understanding of color vision of Pacific bluefin tuna Thunnus orientalis, we applied a molecular technique and histology to study cone cell distribution in the retina of juvenile fish. We isolated three cone opsin genes encoding one blue-sensitive (SWS2) and two green-sensitive (RH2) visual pigments. In situ hybridization revealed that SWS2 mRNA is localized in the single-cone photoreceptors. The localization of the two RH2 signals in distinct cone cells was not determined, probably because of the high homology between the two RH2 genes. Single-cone photoreceptors appeared frequently in the ventral-temporal retina in approximately 80-mm fish and in the temporal retina in approximately 230-mm fish. These cone distributions may define a visual field with best color contrast vision in front and above the fish with a short wavelength (blue) reflecting target (sensed by single cones), and may be enhanced against the longer wavelength (green) background when fish see a target below them (sensed by double cones).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumai H. Present state of bluefin tuna aquaculture in Japan. Suisanzoshoku 1997; 45: 293–297.

    Google Scholar 

  2. Kumai H. Studies on bluefin tuna artificial hatching, rearing, and reproduction. Nippon Suisan Gakkaishi 1998; 64: 601–605.

    Google Scholar 

  3. Sawada Y, Okada T, Miyashita S, Murata O, Kumai H. Completion of the pacific bluefin tuna Thunnus orientalis (Temminck et Schlegel) life cycle. Aquacult. Res. 2005; 36: 413–421.

    Article  Google Scholar 

  4. Miyashita S, Sawada Y, Hattori N, Nakatsukasa H, Okada T, Murata O, Kumai H. Mortality of northern bluefin tuna (Thunnus thynnus) due to trauma caused by collision during early growout culture. J. World Aquaculture Soc. 2000; 31: 632–639.

    Google Scholar 

  5. Miyashita S. Studies on the seedling production of the Pacific bluefin tuna, Thunnus thynnus orientalis. Bull. Fish. Lab. Kinki Univ. 2002; 8: 1–171.

    Google Scholar 

  6. Masuma S, Kawamura G, Tezuka N, Koiso M, Namba K. Retinomotor responses of juvenile bluefin tuna Thunnus thynnus. Fish. Sci. 2001; 67: 228–231.

    Article  CAS  Google Scholar 

  7. Torisawa S, Takagi T, Ishibashi Y, Sawada Y, Yamane T. Changes in the retinal cone density distribution and the retinal resolution during growth of juvenile Pacific bluefin tuna Thunnus orientalis. Fish. Sci. 2007; 73: 1202–1204.

    Article  CAS  Google Scholar 

  8. Kitagawa T, Kimura S, Nakata H, Yamada H. Diving behavior of immature, feeding Pacific bluefin tuna (Thunnus thynnus orientalis) in relation to season and area: the East China Sea and Kuroshio-Oyashio transition region. Fish. Oceanogr. 2004; 13: 161–180.

    Article  Google Scholar 

  9. Bowmaker JK. The visual pigments of fish. Prog. Retin. Eye Res. 1996; 15: 1–31.

    Article  CAS  Google Scholar 

  10. Kawamura G, Nishimura W, Ueda S, Nishi T. Vision in tunas and marlins. Mem. Kagoshima Univ. Res. Center South Pac. 1981; 1: 3–47.

    Google Scholar 

  11. Avery JA, Bowmaker JK, Djamgoz MBA, Downing JEG. Ultra-violet sensitive receptors in a freshwater fish. J. Physiol. 1983; 334: 23P-24P.

    Google Scholar 

  12. Hárosi FI, Hashimoto Y. Ultraviolet visual pigment in a vertebrate: a tetrachromatic cone system in the dace. Science 1983; 222: 1021–1023.

    Article  PubMed  Google Scholar 

  13. Hisatomi O, Satoh T, Barthel LK, Stenkamp DL, Raymond PA, Tokunaga F. Molecular cloning and characterization of the putative ultraviolet-sensitive visual pigment of goldfish. Vision Res. 1996; 36: 933–939.

    Article  PubMed  CAS  Google Scholar 

  14. Hisatomi O, Satoh T, Tokunaga F. The primary structure and distribution of killifish visual pigments. Vision Res. 1997; 37: 3089–3096.

    Article  PubMed  CAS  Google Scholar 

  15. Helvik JV, Drivenes Ø, NÆss TH, Fjose A, Seo H. Molecular cloning and characterization of five opsin genes from the marine flatfish Atlantic halibut (Hippoglossus hippoglossus). Visual Neurosci. 2001; 18: 767–780.

    CAS  Google Scholar 

  16. Loew ER, McFarland WN, Margulies D. Developmental changes in the visual pigments of the yellowfin tuna, Thunnus albacares. Mar. Fresh. Behav. Physiol. 2002; 35: 235–246.

    Article  CAS  Google Scholar 

  17. Fritsches KA, Litherland L, Thomas N, Shand J. Cone visual pigments and retinal mosaics in the striped marlin. J. Fish Biol. 2003; 63: 1347–1351.

    Article  Google Scholar 

  18. Tsuchiya T, Toriyama K, Ejiri S, Hinata K. Molecular characterization of rice genes specifically expressed in the anther tapetum. Plant Mol. Biol. 1994; 26: 1737–1746.

    Article  PubMed  CAS  Google Scholar 

  19. Wang JK, McDowell JH, Hargrave PA. Site of attachment of 11-cis-retinal in bovine rhodopsin. Biochem 1980; 19: 5111–5117.

    Article  CAS  Google Scholar 

  20. Sakmar TP, Franke RR, Khorana HG. Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 8309–8313.

    Article  PubMed  CAS  Google Scholar 

  21. Nathans J. Determinants of visual pigment absorbance: identification of the retinylidene Schiff’s base counterion in bovine rhodopsin. Biochem 1990; 29: 9746–9752.

    Article  CAS  Google Scholar 

  22. Karnic SS, Sakmar TP, Chen H-B, Khorana HG. Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 8459–8463.

    Article  Google Scholar 

  23. Kaushal S, Ridge KD, Khorana HG. Structure and function in rhodopsin. The role of asparagine-linked glycosylation. Proc. Natl. Acad. Sci. U.S.A. 1994; 91: 4024–4028.

    Article  PubMed  CAS  Google Scholar 

  24. Minato T, Shimizu I. Molecular cloning of cone opsin genes and their expression in the retina of a smolt, Ayu (Plecoglossus altivelis, Teleostei). Comp. Biochem. Physiol. B 2005; 140: 197–205.

    Article  Google Scholar 

  25. Yokoyama S. Molecular evolution of vertebrate visual pigments. Prog. Ret. Eye Res. 2000; 19: 385–419.

    Article  CAS  Google Scholar 

  26. Johnson R, Grant KB, Zankel TC, Boehm MF, Merbs SL, Nathans J, Nakanishi K. Cloming and expression of goldfish opsin sequences. Biochem 1993; 32: 208–214.

    Article  CAS  Google Scholar 

  27. Chinen A, Hamaoka T, Yamada Y, Kawamura S. Gene duplication and spectral diversification of cone visual pigments of zebrafish. Genetics 2003; 163: 663–675.

    PubMed  CAS  Google Scholar 

  28. Neafsey DE, Hartl DL. Convergent loss of an anciently duplicated, functionally divergent RH2 opsin gene in the fugu and Tetraodon pufferfish lineages. Gene 2005; 350: 161–171.

    Article  PubMed  CAS  Google Scholar 

  29. Fritsches KA, Partridge JC, Pettigrew JD, Marshall NJ. Color vision in billfish. Phil. Trans. R. Soc. Lond. B 2000; 355: 1253–1256.

    Article  CAS  Google Scholar 

  30. Fritsches KA, Marshall NJ, Warrant EJ. Retinal specializations in the blue marlin: eyes designed for sensitivity to low light levels. Mar. Freshwater Res. 2003; 54: 333–341.

    Article  Google Scholar 

  31. Fritsches KA, Warrant EJ. Do tuna and billfish see colors? Pelagic Fish. Res. Prog. 2004; 9: 1–4.

    Google Scholar 

  32. Matsuike K. Study on the optical characteristics of the waters in the three oceans (Part-I). J. Tokyo Univ. Fish. 1967; 53: 1–40.

    Google Scholar 

  33. Tanabe T. Studies on the early life ecology of skipjack tuna, Katsuwonus pelamis, in the tropical western-north Pacific. Bull. Fish. Res. Agents 2002; 3: 63–132.

    Google Scholar 

  34. Bowmaker JK, Kunz YW. Ultraviolet receptors, tetrachromatic color vision and retinal mosaics in the brown trout (Salmo trutta): age-dependent changes. Vision Res. 1987; 27: 2101–2108.

    Article  PubMed  CAS  Google Scholar 

  35. Shand J. Changes in the spectral absorption of cone visual pigments during the settlement of the goatfish Upeneus tragula: the loss of red sensitivity as a benthic existence begins. J. Comp. Physiol. A 1993; 173: 115–121.

    Article  Google Scholar 

  36. Britt LL, Loew ER, McFarland WN. Visual pigments in the early life stages of Pacific northwest marine fishes. J. Exp. Biol. 2001; 204: 2581–2587.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taeko Miyazaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyazaki, T., Kohbara, J., Takii, K. et al. Three cone opsin genes and cone cell arrangement in retina of juvenile Pacific bluefin tuna Thunnus orientalis . Fish Sci 74, 314–321 (2008). https://doi.org/10.1111/j.1444-2906.2008.01527.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2008.01527.x

Key words

Navigation