Skip to main content
Log in

Evaluation of genetic diversity of eight grouper species Epinephelus spp. based on microsatellite variations

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Genetic diversity among eight species of grouper, Epinephelus bleekeri, E. coioides, E. malabaricus, E. ongus, E. akaara, E. maculatus, E. merra and E. fuscoguttatus, was studied using six microsatellite loci, Em-01 , Em-03 , Em-07 , Em-08 , Em-10 , and CA-07 , with the aim of exploring the feasibility of using microsatellite data for species identification. The results showed high levels of genetic differentiation among species (F st =0.4403 and R st =0.4954). Species identification based on fixed allelic differences was possible between E. coioides, E. ongus, and E. fuscoguttatus at Em-01 and between E. fuscoguttatus and E. ongus at Em-08 . Private alleles were found in all species, except for E. ongus. Pairwise F st ranged 0.238–0.578 (P<0.008 Bonferroni correction), and Nei’s genetic distance ranged 0.433–2.710. Size homoplasy was observed at Em-03 157 allele, which was characterized by a T-C transition at the 119th nucleotide site of PCR products. The genetic assignment test unambiguously assigned each individual to the correct species. Thus, this test can be used for species identification of unknown individuals when the multilocus genotypes of the six microsatellite loci are available. The phylogenetic (neighbor-joining) tree, which was constructed based on the genetic distance matrix, separated the eight grouper species into two main groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Froese R, Pauly D. FishBase. 2005 September. [Cited 10 September 2005]. Available from URL: http://www.fishbase.org, version 09/2005.

  2. Heemstra PC, Randall JE. FAO Species Catalogue; Groupers of the World (Family Serranidae, Subfamily Epinephelinae). FAO Fisheries Synopsis no. 125. FAO, Rome. 1993.

    Google Scholar 

  3. Leong TS. Grouper culture. In: De Silva SS (ed.). Tropical Mariculture. Academic Press, Toronto. 1998; 381–448.

    Google Scholar 

  4. Frankham R, Ballou JD, Briscoe DA. Introduction to Population Genetics. Cambridge University Press, Cambridge, UK. 2000.

    Google Scholar 

  5. Avise JC. Molecular Markers, Natural History and Evolution. Chapman & Hall, New York, NY. 1994.

    Google Scholar 

  6. Grudzien TA, Turner BJ. Genic identity and geographic differentiation of trophically dichotomous Ilyodon (Teleostei: Goodeidae). Copeia 1984; 1984: 102–107.

    Article  Google Scholar 

  7. Turner BJ, Grosse DJ. Trophic differentiation in Ilyodon, a genus of stream-dwelling goodeid fishes: speciation versus ecological polymorphism. Evolution 1980; 34: 259–270.

    Article  Google Scholar 

  8. Hanfling B, Brandl R. Genetic differentiation of the bullhead Cottus gobio L. across watersheds in Central Europe: evidence for two taxa. Heredity 1998; 80: 110–117.

    Article  Google Scholar 

  9. Senanan W, Kapuscinski AR, Na-Nakorn U, Miller LM. Genetic impacts of hybrid catfish farming (Clarias macrocephalus x C. gariepinus) on native catfish populations in central Thailand. Aquaculture 2004; 235: 167–184.

    Article  CAS  Google Scholar 

  10. Na-Nakorn U, Kamonrat W, Ngamsiri T. Genetic diversity of walking catfish, Clarias macrocephalus, in Thailand and evidence of genetic introgression from introduced farmed C. gariepinus. Aquaculture 2004; 240: 145–163.

    Article  Google Scholar 

  11. Sugama K, Tridjoko Haryanti, Budi S, Cholik F. Genetic variation and population structure in the humpback grouper, Cromileptes altivelis, throughout its range in Indonesian waters. Indo Fish. Res. J. 1999; 1: 32–38.

    Google Scholar 

  12. De Innocentiis S, Sola L, Cataudela S, Bentzen P. Allozyme and microsatellite loci provide discordant estimates of population differentiation in the endangered dusky grouper (Epinephelus marginatus) within the Mediterranean Sea. Mol. Ecol. 2001; 10: 2163–2175.

    Article  PubMed  Google Scholar 

  13. Rhodes KL, Lewis RI, Chapman RW, Sadovy Y. Genetic structure of camouflage grouper, Epinephelus polyphekadion (Pisces: Serranidae), in the western central Pacific. Mar. Biol. 2003; 142: 771–776.

    Google Scholar 

  14. Zatcoff MS, Ball AO, Sedberry GR. Population genetic analysis of red grouper, Epinephelus morio, and scamp, Mycteroperca phenax, from the southeastern U.S. Atlantic and gulf of Mexico. Mar. Biol. 2004; 144: 769–777.

    Article  Google Scholar 

  15. Gilles A, Miquelis A, Quignard JP, Faure E. Molecular phylogeography of western Mediterranean dusky grouper Epinephelus marginatus. Life Sci. 2000; 323: 195–205.

    CAS  Google Scholar 

  16. Carlin JL, Robertson DR, Bowen BW. Ancient divergences and recent connections in two tropical Atlantic reef fishes Epinephelus adscensionis and Rypticus saponaceous (Percoidei: Serranidae). Mar. Biol. 2003; 143: 1057–1069.

    Article  Google Scholar 

  17. Craig MT, Pondella DJ, Franck JPC, Hafner JC. On the status of the serranid fish genus Epinephelus: evidence for paraphyly based upon 16S rDNA sequence. Mol. Phylogenet. Evol. 2001; 19: 121–130.

    Article  PubMed  CAS  Google Scholar 

  18. Govindaraju GS, Jayasankar P. Taxonomic relationship among seven species of Grouper (genus Epinephelus: Family Serranidae) as revealed by RAPD fingerprinting. Mar. Biotechnol. 2004; 6: 229–237.

    Article  PubMed  CAS  Google Scholar 

  19. Takagi M, Taniguchi N, Cook D, Doyle RW. Isolation and characterization of microsatellite loci from red sea bream Pagrus major and detection in closely related species. Fish. Sci. 1997; 63: 199–204.

    CAS  Google Scholar 

  20. Morris DB, Richard KR, Wright JM. Microsatellites from rainbow trout (Onchorhynchus mykiss) and their use for genetic study of salmonids. Can. J. Fish. Aquat. Sci. 1996; 53: 120–126.

    Article  CAS  Google Scholar 

  21. Nugroho E, Taniguchi N. Isolation of greater amberjack microsatellite DNA and their application as genetic marker to species of genus Seriola from Japan. Fish. Sci. 1999; 65: 353–357.

    CAS  Google Scholar 

  22. Taylor JS, Justina SP, Breden F. Microsatellite allele size homoplasy in the guppy (Poecillia reticulata). J. Mol. Evol. 1999; 48: 245–247.

    PubMed  CAS  Google Scholar 

  23. Adams RI, Brown KM, Hamilton MB. The impact of microsatellite homoplasy on multilocus population structure estimates in a tropical tree (Corythophora alta) and an anadromous fish (Morone saxatilis). Mol. Ecol. 2004; 13: 2579–2588.

    Article  PubMed  CAS  Google Scholar 

  24. Blanquer-Maumont A, Crouau-Roy B. Polymorphism, monomorphism and sequence in conserved microsatellites in Primates species. J. Mol. Evol. 1995; 41: 492–497.

    Article  PubMed  CAS  Google Scholar 

  25. Grimaldi M, Crouau-Roy B. Microsatellite allelic homoplasy due to variable flanking sequences. J. Mol. Evol. 1997; 44: 336–340.

    Article  PubMed  CAS  Google Scholar 

  26. Viard F, Franck P, Dubois M, Estoup A, Jarne P. Variation of microsatellite size homoplasy across electromorphs, loci, and populations in three invertebrate species. J. Mol. Evol. 1998; 47: 42–51.

    Article  PubMed  CAS  Google Scholar 

  27. Angers B, Estoup A, Jarne P. Microsatellite size homoplasy, SSCP, and population structure: a case study in the freshwater snail Bulinus truncatus. Mol. Biol. Evol. 2000; 17: 1926–1932.

    PubMed  CAS  Google Scholar 

  28. Nugroho E, Takagi M, Sugama K, Taniguchi N. Detection of GT repeats microsatellite loci and their polymorphism for grouper of the genus Epinephelus. Fish. Sci. 1998; 64: 836–837.

    CAS  Google Scholar 

  29. Taniguchi N, Nugroho E. Genetic characteristics of introduced fishes and study of genetic evaluation of fish genetics and breeding. In: Japan Seawater Fisheries Cultivation Association (ed.). A Report of Project for Counter Measure on the Problems Caused in Fish Culture. Japan Seawater Fisheries Cultivation Association, Kobe, Japan. 2000; 141–188 (in Japanese).

    Google Scholar 

  30. Rivera MAJ, Graham GC, Roderick GK. Isolation and characterization of nine microsatellite loci from the Hawaiian grouper Epinephelus quernus (Serranidae) for population genetic analyses. Mar. Biotechnol. 2003; 5: 126–129.

    Article  PubMed  CAS  Google Scholar 

  31. Perez-Enriquez R, Takemura M, Taniguchi N. Microsatellite DNA detection by chemiluminescence in red sea bream: a practical manual. Fish. Genet. Breed. Sci. 1998; 26: 73–79 (in Japanese).

    Google Scholar 

  32. Nei M. Molecular Evolutionary Genetics. Columbia University Press, Columbia, NY. 1987.

    Google Scholar 

  33. Wright S. The genetic structure of populations. Ann. Eugenics 1951; 15: 323–354.

    Google Scholar 

  34. Wright S. Evolution and the Genetics of Populations, Vol. 4. Variability within and among Natural Populations. University of Chicago Press, Chicago, IL. 1978.

    Google Scholar 

  35. Rousset F. Equilibrium values of measures of population subdivision for stepwise mutational processes. Genetics 1996; 142: 1357–1362.

    PubMed  CAS  Google Scholar 

  36. Raymond M, Rousset F. GENEPOP (ver. 1.2): a population genetics Software for exact test and ecumenicism. J. Hered. 1995, 86: 248–249.

    Google Scholar 

  37. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 1978; 89: 583–590.

    PubMed  Google Scholar 

  38. Saitoh N, Nei M. The neighbor-joining method: a mew method for reconstruction phylogenetic trees. Mol. Biol. Evol. 1987; 4: 406–425.

    Google Scholar 

  39. Felsenstein J. PHYLIP (Phylogeny Inference Package) Version 3.6. Department of Genetics. University of Washington, Seattle, WA. 2004.

    Google Scholar 

  40. Koichiro T. Tree-Explorer software, Version 2.12. Evolutionary Genetics Laboratory, Tokyo Metropolitan University, Tokyo. 1999.

    Google Scholar 

  41. banks MA, Eichert W. WHICHRUN (ver. 4.1): a computer program for population assignment of individuals based on multilocus genotype data. J. Hered. 2000; 91: 87–89.

    Article  PubMed  CAS  Google Scholar 

  42. Antoro S, Na-Nakorn U, Koedprang W. Study of genetic diversity of orange-spotted grouper, Epinephelus coioides from Thailand and Indonesia using microsatellite markers. Mar. Biotechnol. 2006; 8: 17–26.

    Article  PubMed  CAS  Google Scholar 

  43. Banks MA, Rashbrook VK, Calavetta MJ, Dean CA, Hedgcock D. Analysis of microsatellite DNA resolves genetic structure and diversity of chinook salmon (Oncorhynchus tshawytscha) in California’s Central Valley. Can. J. Fish. Aquat. Sci. 2000; 57: 915–927.

    Article  CAS  Google Scholar 

  44. Estoup A, Tailliez C, Cornuet JM, Solignac M. Size homoplasy and mutational processes of interrupted microsatellites in two bee species, Apis mellifera and Bombus terrestris (Apidae). Mol. Biol. Evol. 1995; 12: 1074–1084.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uthairat Na-Nakorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koedprang, W., Na-Nakorn, U., Nakajima, M. et al. Evaluation of genetic diversity of eight grouper species Epinephelus spp. based on microsatellite variations. Fish Sci 73, 227–236 (2007). https://doi.org/10.1111/j.1444-2906.2007.01328.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2007.01328.x

Key words

Navigation