Download citation
Download citation
link to html
An experimental charge density distribution of 2-nitroimidazole was determined from high-resolution X-ray diffraction and the Hansen–Coppens multipole model. The 2-nitroimidazole compound was crystallized and a high-angle X-ray diffraction intensity data set has been collected at low temperature (110 K). The structure was solved and further, an aspherical multipole model refinement was performed up to octapole level; the results were used to determine the structure, bond topological and electrostatic properties of the molecule. In the crystal, the molecule exhibits a planar structure and forms weak and strong intermolecular hydrogen-bonding interactions with the neighbouring molecules. The Hirshfeld surface of the molecule was plotted, which explores different types of intermolecular interactions and their strength. The topological analysis of electron density at the bond critical points (b.c.p.) of the molecule was performed, from that the electron density ρbcp(r) and the Laplacian of electron density ∇2ρbcp(r) at the b.c.p.s of the molecule have been determined; these parameters show the charge concentration/depletion of the nitroimidazole bonds in the crystal. The electrostatic parameters like atomic charges and the dipole moment of the molecule were calculated. The electrostatic potential surface of the molecule has been plotted, and it displays a large electronegative region around the nitro group. All the experimental results were compared with the corresponding theoretical calculations performed using CRYSTAL09.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520616010581/gw5044sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520616010581/gw5044Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2052520616010581/gw5044Isup3.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520616010581/gw5044sup4.pdf
Residual maps

CCDC reference: 1451587

Computing details top

Data collection: 'CrysAlis PRO, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01)' _computing_cell_refinement 'CrysAlis PRO, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01)'; data reduction: 'CrysAlis PRO, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01)'; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: XD2006 (Volkov et al., 2006); molecular graphics: XD2006 (Volkov et al., 2006); software used to prepare material for publication: XD2006 (Volkov et al., 2006).

(I) top
Crystal data top
C3H3N3O2F(000) = 232
Mr = 113.08Dx = 1.718 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: P 1 21/c 1Cell parameters from 15907 reflections
a = 7.3215 (1) Åθ = 3.7–53.1°
b = 9.8106 (1) ŵ = 0.15 mm1
c = 6.7539 (1) ÅT = 110 K
β = 115.710 (2)°Block, colorless
V = 437.10 (1) Å30.82 × 0.25 × 0.25 mm
Z = 4
Data collection top
Xcalibur, Eos, Nova
diffractometer
5222 independent reflections
Radiation source: fine-focus sealed tube4384 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 53.3°, θmin = 3.1°
Absorption correction: analytical
'CrysAlisPro, Agilent Technologies,' Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.'
h = 1616
Tmin = 0.918, Tmax = 0.971k = 2222
36394 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.046H-atom parameters not defined?
S = 1.64 w2 = 1/[s2(Fo2)]
4224 reflections(Δ/σ)max = 0.00003
198 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Experimental. A nitrogen gas-flow low temperature device was used. A face indexed analytical absorption correction was performed.

Refinement. Reflections were merged with Sortav (Blessing, 1995).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O(1)0.31880 (3)0.46075 (2)0.22196 (5)0.015
O(2)0.31676 (4)0.68270 (2)0.21843 (6)0.019
N(1)0.06896 (3)0.457167 (18)0.26253 (3)0.010
N(3)0.23753 (3)0.570910 (19)0.22799 (3)0.011
N(2)0.06721 (3)0.684992 (18)0.25488 (3)0.011
C(2)0.03474 (3)0.569642 (19)0.24893 (3)0.010
C(1)0.25118 (3)0.502892 (18)0.27753 (3)0.012
C(3)0.25216 (3)0.643865 (19)0.27306 (4)0.012
H(2)0.0194840.7775550.2476040.0133 (13)
H(1)0.3752770.4387740.2907450.0249 (14)
H(3)0.3744940.7083670.2821960.0266 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O(1)0.01196 (7)0.01240 (7)0.02235 (9)0.00248 (6)0.00914 (7)0.00013 (6)
O(2)0.01392 (9)0.01207 (8)0.03570 (13)0.00278 (6)0.01409 (9)0.00100 (8)
N(1)0.00934 (6)0.00793 (5)0.01393 (6)0.00021 (4)0.00551 (5)0.00007 (4)
N(3)0.00923 (5)0.00981 (5)0.01595 (6)0.00006 (5)0.00657 (5)0.00034 (5)
N(2)0.00991 (6)0.00792 (5)0.01527 (7)0.00017 (4)0.00636 (5)0.00002 (4)
C(2)0.00852 (5)0.00813 (5)0.01287 (6)0.00007 (5)0.00530 (5)0.00015 (4)
C(1)0.00918 (5)0.00986 (5)0.01624 (7)0.00074 (5)0.00612 (5)0.00002 (5)
C(3)0.00973 (6)0.00988 (5)0.01769 (7)0.00094 (5)0.00688 (5)0.00007 (5)
Geometric parameters (Å, º) top
O(1)—N(3)1.2259 (3)N(2)—C(3)1.3665 (3)
O(2)—N(3)1.2292 (3)N(2)—H(2)0.9666 (2)
N(1)—C(2)1.3198 (3)C(1)—C(3)1.3834 (2)
N(1)—C(1)1.3690 (3)C(1)—H(1)1.0765 (2)
N(3)—C(2)1.4291 (3)C(3)—H(3)1.0763 (2)
N(2)—C(2)1.3466 (3)
C(2)—N(1)—C(1)104.115 (16)N(1)—C(2)—N(2)113.947 (18)
O(1)—N(3)—O(2)125.00 (2)N(3)—C(2)—N(2)122.292 (17)
O(1)—N(3)—C(2)117.652 (19)N(1)—C(1)—C(3)109.883 (17)
O(2)—N(3)—C(2)117.34 (2)N(1)—C(1)—H(1)125.104 (17)
C(2)—N(2)—C(3)105.627 (16)C(3)—C(1)—H(1)125.013 (18)
C(2)—N(2)—H(2)127.20 (2)N(2)—C(3)—C(1)106.427 (16)
C(3)—N(2)—H(2)127.175 (19)N(2)—C(3)—H(3)126.805 (17)
N(1)—C(2)—N(3)123.760 (18)C(1)—C(3)—H(3)126.768 (18)
C(1)—N(1)—C(2)—N(3)179.29 (3)C(2)—N(2)—C(3)—C(1)0.107 (17)
C(1)—N(1)—C(2)—N(2)0.245 (17)C(2)—N(2)—C(3)—H(3)179.92 (3)
C(2)—N(1)—C(1)—C(3)0.165 (17)H(2)—N(2)—C(2)—N(1)179.85 (3)
C(2)—N(1)—C(1)—H(1)179.80 (3)H(2)—N(2)—C(2)—N(3)0.612 (19)
O(1)—N(3)—C(2)—N(1)0.17 (2)H(2)—N(2)—C(3)—C(1)179.97 (3)
O(1)—N(3)—C(2)—N(2)179.33 (3)H(2)—N(2)—C(3)—H(3)0.004 (19)
O(2)—N(3)—C(2)—N(1)179.50 (3)N(1)—C(1)—C(3)—N(2)0.036 (17)
O(2)—N(3)—C(2)—N(2)1.00 (2)N(1)—C(1)—C(3)—H(3)179.93 (3)
C(3)—N(2)—C(2)—N(1)0.228 (17)H(1)—C(1)—C(3)—N(2)179.93 (3)
C(3)—N(2)—C(2)—N(3)179.31 (3)H(1)—C(1)—C(3)—H(3)0.100 (18)
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds