Download citation
Download citation
link to html
The structure of potassium dinitramide (KDN), KN3O4, has been refined in the temperature range 85–298 K from single-crystal X-ray diffraction data. The unit-cell axial lengths and the cell volume decrease linearly on cooling with the b axis being the most sensitive to the change of temperature. The β cell angle increases with decreasing temperature. The thermal expansion of KDN is significantly anisotropic, expanding along the b axis [010] more than three times the amount parallel to any other crystallographic direction. Other eigenvectors of the thermal expansion tensor lie approximately parallel to the diagonals of the ac plane. A rigid-body analysis of the dinitramide ion using the TLS formalism was performed and shows that the thermal motion of the anion is well represented by the rigid-body model. The eigenvalues of the libration tensor show significant anisotropy, whereas the translation tensor is close to isotropic. The variation of all descriptions of the thermal motion with respect to temperature indicates an anharmonic contribution to the mean field potential. The direction of greatest unit-cell expansion coincides with the largest components of the displacement tensor of the potassium ions and the direction of the largest atomic amplitudes due to the libration of the dinitramide anions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768100018887/br0101sup1.cif
Contains datablocks kdn85, kdn100, kdn150, kdn200, kdn250, kdn298, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100018887/br0101kdn85sup2.hkl
Contains datablock sad

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100018887/br0101kdn100sup3.hkl
Contains datablock sad

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100018887/br0101kdn150sup4.hkl
Contains datablock sad

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100018887/br0101kdn200sup5.hkl
Contains datablock sad

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100018887/br0101kdn250sup6.hkl
Contains datablock sad

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100018887/br0101kdn298sup7.hkl
Contains datablock sad

Experimental top

detector at 3 cm

Computing details top

For all compounds, data collection: Siemens SMART; cell refinement: Siemens SAINT; data reduction: Siemens SAINT; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: Siemens SHELXTL; software used to prepare material for publication: Siemens SHELXTL and the Toledo cifomatic.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
(kdn85) top
Crystal data top
KN3O4F(000) = 288
Mr = 145.13Dx = 2.280 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.5891 (4) ÅCell parameters from 2897 reflections
b = 9.0653 (5) Åθ = 6.4–24.4°
c = 7.1459 (4) ŵ = 1.17 mm1
β = 97.975 (2)°T = 85 K
V = 422.71 (4) Å30.34 × 0.14 × 0.08 mm
Z = 4
Data collection top
Platform
diffractometer
1034 independent reflections
Radiation source: Sealed Tube902 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 28.3°, θmin = 3.7°
Absorption correction: empirical :Multipole Expansion (Blessing, 1995)
?
h = 87
Tmin = 0.791, Tmax = 0.990k = 1212
3515 measured reflectionsl = 89
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.031Secondary atom site location: difference Fourier map
wR(F2) = 0.075Calculated w = 1/[σ2(Fo2) + (0.0423P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1034 reflectionsΔρmax = 0.55 e Å3
73 parametersΔρmin = 0.60 e Å3
Crystal data top
KN3O4V = 422.71 (4) Å3
Mr = 145.13Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.5891 (4) ŵ = 1.17 mm1
b = 9.0653 (5) ÅT = 85 K
c = 7.1459 (4) Å0.34 × 0.14 × 0.08 mm
β = 97.975 (2)°
Data collection top
Platform
diffractometer
1034 independent reflections
Absorption correction: empirical :Multipole Expansion (Blessing, 1995)
?
902 reflections with I > 2σ(I)
Tmin = 0.791, Tmax = 0.990Rint = 0.048
3515 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03173 parameters
wR(F2) = 0.0750 restraints
S = 1.02Δρmax = 0.55 e Å3
1034 reflectionsΔρmin = 0.60 e Å3
Special details top

Experimental. The decay correction was applied simultaneously with the absorption correction in SADABS. No formal measure of the extent of decay is printed out by this program. The final unit cell is obtained from the refinement of the XYZ weighted centroids of reflections above 20 σ(I).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.86050 (5)0.34347 (3)0.83221 (4)0.01092 (13)
O41.0107 (2)0.34344 (12)1.2155 (2)0.0126 (3)
O20.7261 (2)0.53857 (12)1.1548 (2)0.0141 (3)
N20.6489 (2)0.46229 (13)1.2687 (2)0.0105 (3)
O10.4635 (2)0.46164 (13)1.2807 (2)0.0143 (3)
N10.7602 (2)0.37658 (15)1.4085 (2)0.0117 (3)
N30.9507 (2)0.34065 (13)1.3723 (2)0.0090 (3)
O31.0634 (2)0.29447 (12)1.51469 (15)0.0129 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0094 (2)0.0135 (2)0.0099 (2)0.00124 (10)0.00183 (13)0.00015 (10)
O40.0111 (6)0.0184 (6)0.0088 (5)0.0013 (4)0.0031 (4)0.0005 (4)
O20.0147 (6)0.0142 (6)0.0135 (5)0.0008 (4)0.0025 (4)0.0044 (4)
N20.0104 (6)0.0107 (6)0.0105 (6)0.0001 (4)0.0014 (5)0.0016 (4)
O10.0072 (6)0.0181 (6)0.0176 (6)0.0021 (4)0.0020 (4)0.0016 (4)
N10.0098 (7)0.0144 (6)0.0112 (6)0.0028 (5)0.0024 (5)0.0016 (5)
N30.0086 (6)0.0095 (6)0.0092 (6)0.0014 (4)0.0017 (5)0.0003 (4)
O30.0117 (6)0.0160 (6)0.0101 (5)0.0018 (4)0.0011 (4)0.0008 (4)
Geometric parameters (Å, º) top
K1—O42.7800 (12)O2—N21.231 (2)
K1—O3i2.7938 (11)O2—K1v2.9159 (12)
K1—O1ii2.8022 (12)N2—O11.236 (2)
K1—O3iii2.8238 (11)N2—N11.391 (2)
K1—O1iv2.8837 (12)N2—K1vii3.4262 (13)
K1—O4i2.8888 (12)O1—K1ii2.8023 (12)
K1—O2v2.9159 (12)O1—K1vii2.8837 (12)
K1—O4v2.9954 (11)N1—N31.356 (2)
K1—N1iii3.0232 (14)N1—K1viii3.0232 (14)
K1—O23.1294 (12)N1—K1vii3.2884 (14)
K1—N3i3.2208 (13)N3—O31.246 (2)
K1—N1iv3.2884 (14)N3—K1vi3.2208 (13)
O4—N31.239 (2)N3—K1viii3.4203 (13)
O4—K1vi2.8888 (11)O3—K1vi2.7937 (11)
O4—K1v2.9954 (11)O3—K1viii2.8239 (11)
O4—K1—O3i73.56 (3)O4v—K1—N3i139.06 (3)
O4—K1—O1ii115.89 (3)N1iii—K1—N3i94.07 (3)
O3i—K1—O1ii82.03 (3)O2—K1—N3i84.32 (3)
O4—K1—O3iii130.39 (3)O4—K1—N1iv70.68 (3)
O3i—K1—O3iii138.17 (2)O3i—K1—N1iv104.36 (3)
O1ii—K1—O3iii107.13 (3)O1ii—K1—N1iv172.24 (4)
O4—K1—O1iv93.88 (3)O3iii—K1—N1iv65.18 (3)
O3i—K1—O1iv79.80 (3)O1iv—K1—N1iv40.72 (3)
O1ii—K1—O1iv138.71 (2)O4i—K1—N1iv106.30 (3)
O3iii—K1—O1iv66.45 (3)O2v—K1—N1iv59.61 (3)
O4—K1—O4i116.43 (3)O4v—K1—N1iv111.14 (3)
O3i—K1—O4i44.73 (3)N1iii—K1—N1iv106.56 (4)
O1ii—K1—O4i75.00 (3)O2—K1—N1iv121.52 (3)
O3iii—K1—O4i97.09 (3)N3i—K1—N1iv109.45 (3)
O1iv—K1—O4i65.99 (3)N3—O4—K1140.90 (9)
O4—K1—O2v76.43 (3)N3—O4—K1vi93.95 (8)
O3i—K1—O2v149.47 (3)K1—O4—K1vi116.44 (4)
O1ii—K1—O2v116.68 (3)N3—O4—K1v104.67 (8)
O3iii—K1—O2v62.55 (3)K1—O4—K1v87.46 (3)
O1iv—K1—O2v96.92 (3)K1vi—O4—K1v111.18 (4)
O4i—K1—O2v158.23 (3)N2—O2—K1v130.92 (10)
O4—K1—O4v92.54 (3)N2—O2—K1110.78 (8)
O3i—K1—O4v134.84 (3)K1v—O2—K182.65 (3)
O1ii—K1—O4v65.57 (3)O2—N2—O1123.47 (13)
O3iii—K1—O4v83.37 (3)O2—N2—N1124.30 (13)
O1iv—K1—O4v144.98 (3)O1—N2—N1112.03 (12)
O4i—K1—O4v138.60 (2)O2—N2—K1vii146.09 (10)
O2v—K1—O4v51.54 (3)O1—N2—K1vii54.23 (7)
O4—K1—N1iii170.13 (4)N1—N2—K1vii72.54 (8)
O3i—K1—N1iii116.22 (3)N2—O1—K1ii134.24 (9)
O1ii—K1—N1iii66.24 (3)N2—O1—K1vii105.41 (8)
O3iii—K1—N1iii43.36 (3)K1ii—O1—K1vii117.26 (4)
O1iv—K1—N1iii89.43 (3)N3—N1—N2114.00 (12)
O4i—K1—N1iii73.39 (3)N3—N1—K1viii95.04 (8)
O2v—K1—N1iii93.95 (3)N2—N1—K1viii142.62 (9)
O4v—K1—N1iii79.51 (3)N3—N1—K1vii124.32 (9)
O4—K1—O251.16 (3)N2—N1—K1vii83.66 (8)
O3i—K1—O267.72 (3)K1viii—N1—K1vii99.47 (4)
O1ii—K1—O264.76 (3)O4—N3—O3121.10 (13)
O3iii—K1—O2153.47 (3)O4—N3—N1126.00 (12)
O1iv—K1—O2137.04 (3)O3—N3—N1112.78 (12)
O4i—K1—O2104.37 (3)O4—N3—K1vi63.48 (7)
O2v—K1—O297.35 (3)O3—N3—K1vi59.11 (7)
O4v—K1—O270.24 (3)N1—N3—K1vi162.01 (9)
N1iii—K1—O2129.55 (3)O4—N3—K1viii171.32 (9)
O4—K1—N3i95.78 (3)O3—N3—K1viii51.75 (7)
O3i—K1—N3i22.50 (3)N1—N3—K1viii61.70 (7)
O1ii—K1—N3i74.79 (3)K1vi—N3—K1viii110.42 (4)
O3iii—K1—N3i119.08 (3)N3—O3—K1vi98.39 (8)
O1iv—K1—N3i74.30 (3)N3—O3—K1viii107.97 (9)
O4i—K1—N3i22.57 (3)K1vi—O3—K1viii152.37 (4)
O2v—K1—N3i168.03 (3)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y+1, z+2; (iii) x, y, z1; (iv) x+1/2, y+1/2, z1/2; (v) x+2, y+1, z+2; (vi) x+1/2, y+1/2, z+1/2; (vii) x1/2, y+1/2, z+1/2; (viii) x, y, z+1.
(kdn100) top
Crystal data top
KN3O4F(000) = 288
Mr = 145.13Dx = 2.274 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.5918 (4) ÅCell parameters from 2901 reflections
b = 9.0778 (5) Åθ = 6.4–28.0°
c = 7.1540 (4) ŵ = 1.17 mm1
β = 97.946 (2)°T = 100 K
V = 423.98 (4) Å30.34 × 0.14 × 0.08 mm
Z = 4
Data collection top
Platform
diffractometer
1041 independent reflections
Radiation source: Sealed Tube918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 28.4°, θmin = 3.7°
Absorption correction: empirical :Multipole Expansion (Blessing, 1995)
?
h = 87
Tmin = 0.768, Tmax = 0.990k = 1212
3547 measured reflectionsl = 89
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.029Secondary atom site location: difference Fourier map
wR(F2) = 0.068Calculated w = 1/[σ2(Fo2) + (0.038P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1041 reflectionsΔρmax = 0.53 e Å3
73 parametersΔρmin = 0.60 e Å3
Crystal data top
KN3O4V = 423.98 (4) Å3
Mr = 145.13Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.5918 (4) ŵ = 1.17 mm1
b = 9.0778 (5) ÅT = 100 K
c = 7.1540 (4) Å0.34 × 0.14 × 0.08 mm
β = 97.946 (2)°
Data collection top
Platform
diffractometer
1041 independent reflections
Absorption correction: empirical :Multipole Expansion (Blessing, 1995)
?
918 reflections with I > 2σ(I)
Tmin = 0.768, Tmax = 0.990Rint = 0.046
3547 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02973 parameters
wR(F2) = 0.0680 restraints
S = 1.00Δρmax = 0.53 e Å3
1041 reflectionsΔρmin = 0.60 e Å3
Special details top

Experimental. The decay correction was applied simultaneously with the absorption correction in SADABS. No formal measure of the extent of decay is printed out by this program. The final unit cell is obtained from the refinement of the XYZ weighted centroids of reflections above 20 σ(I).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.86034 (4)0.34332 (3)0.83205 (4)0.01160 (12)
O41.0104 (2)0.34353 (11)1.21534 (15)0.0139 (2)
O20.7262 (2)0.53844 (11)1.15502 (15)0.0148 (2)
N20.6488 (2)0.46237 (12)1.2686 (2)0.0111 (3)
O10.4636 (2)0.46163 (12)1.2804 (2)0.0155 (2)
N10.7599 (2)0.37665 (14)1.4081 (2)0.0122 (3)
N30.9506 (2)0.34062 (12)1.3721 (2)0.0100 (3)
O31.06313 (15)0.29457 (11)1.51450 (13)0.0132 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0107 (2)0.0152 (2)0.0092 (2)0.00139 (10)0.00223 (12)0.00025 (10)
O40.0130 (5)0.0215 (6)0.0080 (5)0.0017 (4)0.0041 (4)0.0008 (4)
O20.0158 (6)0.0154 (5)0.0133 (5)0.0012 (4)0.0019 (4)0.0043 (4)
N20.0114 (6)0.0115 (6)0.0104 (6)0.0004 (4)0.0013 (4)0.0018 (4)
O10.0081 (5)0.0196 (6)0.0188 (5)0.0024 (4)0.0019 (4)0.0016 (4)
N10.0113 (6)0.0150 (6)0.0108 (6)0.0033 (4)0.0031 (5)0.0022 (4)
N30.0104 (6)0.0106 (6)0.0091 (6)0.0012 (4)0.0022 (4)0.0006 (4)
O30.0131 (5)0.0167 (5)0.0090 (5)0.0022 (4)0.0012 (4)0.0009 (4)
Geometric parameters (Å, º) top
K1—O42.7834 (11)O2—N21.230 (2)
K1—O3i2.7957 (11)O2—K1v2.9188 (11)
K1—O1ii2.8049 (11)N2—O11.235 (2)
K1—O3iii2.8255 (10)N2—N11.391 (2)
K1—O1iv2.8868 (11)N2—K1vii3.4295 (12)
K1—O4i2.8920 (11)O1—K1ii2.8049 (11)
K1—O2v2.9188 (11)O1—K1vii2.8868 (11)
K1—O4v3.0003 (11)N1—N31.357 (2)
K1—N1iii3.0289 (12)N1—K1viii3.0289 (12)
K1—O23.1341 (11)N1—K1vii3.2901 (13)
K1—N3i3.2219 (12)N3—O31.2467 (15)
K1—N1iv3.2900 (13)N3—K1vi3.2219 (12)
O4—N31.239 (2)N3—K1viii3.4239 (12)
O4—K1vi2.8919 (11)O3—K1vi2.7957 (11)
O4—K1v3.0003 (11)O3—K1viii2.8255 (10)
O4—K1—O3i73.55 (3)O4v—K1—N3i139.10 (3)
O4—K1—O1ii115.77 (3)N1iii—K1—N3i94.07 (3)
O3i—K1—O1ii82.04 (3)O2—K1—N3i84.37 (3)
O4—K1—O3iii130.47 (3)O4—K1—N1iv70.74 (3)
O3i—K1—O3iii138.18 (2)O3i—K1—N1iv104.34 (3)
O1ii—K1—O3iii107.12 (3)O1ii—K1—N1iv172.27 (3)
O4—K1—O1iv93.95 (3)O3iii—K1—N1iv65.23 (3)
O3i—K1—O1iv79.83 (3)O1iv—K1—N1iv40.67 (3)
O1ii—K1—O1iv138.79 (2)O4i—K1—N1iv106.27 (3)
O3iii—K1—O1iv66.46 (3)O2v—K1—N1iv59.69 (3)
O4—K1—O4i116.45 (3)O4v—K1—N1iv111.12 (3)
O3i—K1—O4i44.74 (3)N1iii—K1—N1iv106.58 (4)
O1ii—K1—O4i75.06 (3)O2—K1—N1iv121.48 (3)
O3iii—K1—O4i97.07 (3)N3i—K1—N1iv109.43 (3)
O1iv—K1—O4i66.01 (3)N3—O4—K1141.01 (9)
O4—K1—O2v76.44 (3)N3—O4—K1vi93.85 (7)
O3i—K1—O2v149.48 (3)K1—O4—K1vi116.40 (4)
O1ii—K1—O2v116.59 (3)N3—O4—K1v104.67 (8)
O3iii—K1—O2v62.59 (3)K1—O4—K1v87.54 (3)
O1iv—K1—O2v96.95 (3)K1vi—O4—K1v111.14 (4)
O4i—K1—O2v158.27 (3)N2—O2—K1v131.02 (9)
O4—K1—O4v92.46 (3)N2—O2—K1110.79 (8)
O3i—K1—O4v134.85 (3)K1v—O2—K182.75 (3)
O1ii—K1—O4v65.57 (3)O2—N2—O1123.51 (12)
O3iii—K1—O4v83.35 (3)O2—N2—N1124.26 (12)
O1iv—K1—O4v144.93 (3)O1—N2—N1112.05 (11)
O4i—K1—O4v138.66 (2)O2—N2—K1vii146.11 (9)
O2v—K1—O4v51.43 (3)O1—N2—K1vii54.22 (7)
O4—K1—N1iii170.12 (3)N1—N2—K1vii72.48 (7)
O3i—K1—N1iii116.23 (3)N2—O1—K1ii134.23 (8)
O1ii—K1—N1iii66.27 (3)N2—O1—K1vii105.47 (8)
O3iii—K1—N1iii43.34 (3)K1ii—O1—K1vii117.28 (4)
O1iv—K1—N1iii89.44 (3)N3—N1—N2114.09 (11)
O4i—K1—N1iii73.40 (3)N3—N1—K1viii94.93 (7)
O2v—K1—N1iii93.95 (3)N2—N1—K1viii142.62 (9)
O4v—K1—N1iii79.54 (3)N3—N1—K1vii124.30 (8)
O4—K1—O251.05 (3)N2—N1—K1vii83.74 (7)
O3i—K1—O267.76 (3)K1viii—N1—K1vii99.45 (4)
O1ii—K1—O264.75 (3)O4—N3—O3121.25 (12)
O3iii—K1—O2153.42 (3)O4—N3—N1125.82 (11)
O1iv—K1—O2137.05 (3)O3—N3—N1112.82 (11)
O4i—K1—O2104.43 (3)O4—N3—K1vi63.58 (7)
O2v—K1—O297.25 (3)O3—N3—K1vi59.16 (7)
O4v—K1—O270.21 (3)N1—N3—K1vi162.06 (8)
N1iii—K1—O2129.56 (3)O4—N3—K1viii171.38 (9)
O4—K1—N3i95.79 (3)O3—N3—K1viii51.67 (7)
O3i—K1—N3i22.51 (3)N1—N3—K1viii61.80 (7)
O1ii—K1—N3i74.82 (3)K1vi—N3—K1viii110.38 (3)
O3iii—K1—N3i119.07 (3)N3—O3—K1vi98.33 (8)
O1iv—K1—N3i74.33 (3)N3—O3—K1viii108.07 (8)
O4i—K1—N3i22.57 (3)K1vi—O3—K1viii152.31 (4)
O2v—K1—N3i168.08 (3)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y+1, z+2; (iii) x, y, z1; (iv) x+1/2, y+1/2, z1/2; (v) x+2, y+1, z+2; (vi) x+1/2, y+1/2, z+1/2; (vii) x1/2, y+1/2, z+1/2; (viii) x, y, z+1.
(kdn150) top
Crystal data top
KN3O4F(000) = 288
Mr = 145.13Dx = 2.255 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.6010 (3) ÅCell parameters from 2857 reflections
b = 9.1253 (5) Åθ = 5.0–28.3°
c = 7.1657 (4) ŵ = 1.16 mm1
β = 97.890 (1)°T = 150 K
V = 427.55 (4) Å30.34 × 0.14 × 0.08 mm
Z = 4
Data collection top
Platform
diffractometer
1046 independent reflections
Radiation source: Sealed Tube917 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 28.3°, θmin = 3.6°
Absorption correction: empirical: Multipole Expansion (Blessing, 1995)
?
h = 78
Tmin = 0.780, Tmax = 0.990k = 1212
3517 measured reflectionsl = 98
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.030Secondary atom site location: difference Fourier map
wR(F2) = 0.072Calculated w = 1/[σ2(Fo2) + (0.0401P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1046 reflectionsΔρmax = 0.36 e Å3
73 parametersΔρmin = 0.39 e Å3
Crystal data top
KN3O4V = 427.55 (4) Å3
Mr = 145.13Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.6010 (3) ŵ = 1.16 mm1
b = 9.1253 (5) ÅT = 150 K
c = 7.1657 (4) Å0.34 × 0.14 × 0.08 mm
β = 97.890 (1)°
Data collection top
Platform
diffractometer
1046 independent reflections
Absorption correction: empirical: Multipole Expansion (Blessing, 1995)
?
917 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.990Rint = 0.040
3517 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03073 parameters
wR(F2) = 0.0720 restraints
S = 1.04Δρmax = 0.36 e Å3
1046 reflectionsΔρmin = 0.39 e Å3
Special details top

Experimental. The decay correction was applied simultaneously with the absorption correction in SADABS. No formal measure of the extent of decay is printed out by this program. The final unit cell is obtained from the refinement of the XYZ weighted centroids of reflections above 20 σ(I).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.85986 (5)0.34296 (3)0.83151 (4)0.01590 (13)
O41.0097 (2)0.34379 (12)1.2150 (2)0.0190 (3)
O20.7268 (2)0.53839 (12)1.1558 (2)0.0207 (3)
N20.6489 (2)0.46223 (13)1.2683 (2)0.0152 (3)
O10.4639 (2)0.46152 (13)1.2799 (2)0.0219 (3)
N10.7594 (2)0.37658 (14)1.4071 (2)0.0163 (3)
N30.9499 (2)0.34079 (12)1.3713 (2)0.0131 (3)
O31.0620 (2)0.29468 (12)1.51298 (14)0.0178 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0148 (2)0.0202 (2)0.0133 (2)0.00209 (11)0.00379 (13)0.00038 (10)
O40.0172 (6)0.0290 (6)0.0120 (5)0.0023 (4)0.0058 (4)0.0011 (4)
O20.0219 (6)0.0203 (6)0.0198 (6)0.0019 (4)0.0023 (4)0.0065 (4)
N20.0160 (6)0.0147 (6)0.0149 (6)0.0003 (4)0.0023 (5)0.0021 (4)
O10.0126 (6)0.0268 (6)0.0264 (6)0.0039 (4)0.0029 (5)0.0024 (4)
N10.0150 (7)0.0185 (6)0.0160 (6)0.0044 (5)0.0050 (5)0.0030 (5)
N30.0136 (6)0.0138 (6)0.0124 (6)0.0014 (4)0.0035 (5)0.0006 (4)
O30.0178 (6)0.0224 (6)0.0127 (5)0.0036 (4)0.0000 (4)0.0014 (4)
Geometric parameters (Å, º) top
K1—O42.7900 (12)O2—N21.230 (2)
K1—O3i2.7991 (11)O2—K1v2.9250 (12)
K1—O1ii2.8139 (12)N2—O11.236 (2)
K1—O3iii2.8321 (11)N2—N11.390 (2)
K1—O1iv2.8979 (12)N2—K1vii3.4406 (13)
K1—O4i2.9006 (12)O1—K1ii2.8140 (12)
K1—O2v2.9250 (12)O1—K1vii2.8979 (12)
K1—O4v3.0170 (12)N1—N31.357 (2)
K1—N1iii3.0381 (13)N1—K1viii3.0380 (13)
K1—O23.1480 (12)N1—K1vii3.2968 (13)
K1—N3i3.2292 (13)N3—O31.245 (2)
K1—N1iv3.2968 (13)N3—K1vi3.2293 (13)
O4—N31.238 (2)N3—K1viii3.4303 (13)
O4—K1vi2.9006 (11)O3—K1vi2.7992 (11)
O4—K1v3.0170 (12)O3—K1viii2.8321 (11)
O4—K1—O3i73.76 (3)O4v—K1—N3i139.20 (3)
O4—K1—O1ii115.49 (3)N1iii—K1—N3i94.03 (3)
O3i—K1—O1ii82.06 (3)O2—K1—N3i84.66 (3)
O4—K1—O3iii130.67 (3)O4—K1—N1iv70.88 (3)
O3i—K1—O3iii138.01 (2)O3i—K1—N1iv104.36 (3)
O1ii—K1—O3iii107.07 (3)O1ii—K1—N1iv172.33 (4)
O4—K1—O1iv94.03 (3)O3iii—K1—N1iv65.36 (3)
O3i—K1—O1iv79.80 (3)O1iv—K1—N1iv40.55 (3)
O1ii—K1—O1iv139.09 (2)O4i—K1—N1iv106.15 (3)
O3iii—K1—O1iv66.54 (3)O2v—K1—N1iv59.88 (3)
O4—K1—O4i116.48 (3)O4v—K1—N1iv111.09 (3)
O3i—K1—O4i44.55 (3)N1iii—K1—N1iv106.60 (4)
O1ii—K1—O4i75.33 (3)O2—K1—N1iv121.39 (3)
O3iii—K1—O4i96.99 (3)N3i—K1—N1iv109.34 (3)
O1iv—K1—O4i66.00 (3)N3—O4—K1140.99 (9)
O4—K1—O2v76.42 (3)N3—O4—K1vi93.85 (8)
O3i—K1—O2v149.68 (3)K1—O4—K1vi116.27 (4)
O1ii—K1—O2v116.29 (3)N3—O4—K1v104.61 (8)
O3iii—K1—O2v62.75 (3)K1—O4—K1v87.81 (3)
O1iv—K1—O2v97.04 (3)K1vi—O4—K1v111.12 (4)
O4i—K1—O2v158.35 (4)N2—O2—K1v131.39 (9)
O4—K1—O4v92.19 (3)N2—O2—K1110.38 (8)
O3i—K1—O4v134.89 (3)K1v—O2—K183.07 (3)
O1ii—K1—O4v65.48 (3)O2—N2—O1123.59 (12)
O3iii—K1—O4v83.41 (3)O2—N2—N1124.15 (13)
O1iv—K1—O4v144.90 (3)O1—N2—N1112.06 (12)
O4i—K1—O4v138.86 (2)O2—N2—K1vii146.43 (9)
O2v—K1—O4v51.22 (3)O1—N2—K1vii54.26 (7)
O4—K1—N1iii170.04 (4)N1—N2—K1vii72.34 (8)
O3i—K1—N1iii116.08 (3)N2—O1—K1ii134.18 (9)
O1ii—K1—N1iii66.37 (3)N2—O1—K1vii105.50 (8)
O3iii—K1—N1iii43.21 (3)K1ii—O1—K1vii117.40 (4)
O1iv—K1—N1iii89.54 (3)N3—N1—N2114.12 (11)
O4i—K1—N1iii73.46 (3)N3—N1—K1viii94.83 (8)
O2v—K1—N1iii93.92 (3)N2—N1—K1viii142.55 (9)
O4v—K1—N1iii79.64 (3)N3—N1—K1vii124.31 (9)
O4—K1—O250.84 (3)N2—N1—K1vii83.97 (8)
O3i—K1—O268.07 (3)K1viii—N1—K1vii99.38 (4)
O1ii—K1—O264.67 (3)O4—N3—O3121.17 (12)
O3iii—K1—O2153.25 (3)O4—N3—N1125.77 (12)
O1iv—K1—O2137.09 (3)O3—N3—N1112.94 (12)
O4i—K1—O2104.67 (3)O4—N3—K1vi63.66 (7)
O2v—K1—O296.93 (3)O3—N3—K1vi58.99 (7)
O4v—K1—O269.97 (3)N1—N3—K1vi161.99 (9)
N1iii—K1—O2129.57 (3)O4—N3—K1viii171.30 (9)
O4—K1—N3i95.89 (3)O3—N3—K1viii51.68 (7)
O3i—K1—N3i22.40 (3)N1—N3—K1viii61.95 (7)
O1ii—K1—N3i75.01 (3)K1vi—N3—K1viii110.22 (3)
O3iii—K1—N3i118.92 (3)N3—O3—K1vi98.61 (8)
O1iv—K1—N3i74.31 (3)N3—O3—K1viii108.15 (8)
O4i—K1—N3i22.49 (3)K1vi—O3—K1viii151.99 (4)
O2v—K1—N3i168.19 (3)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y+1, z+2; (iii) x, y, z1; (iv) x+1/2, y+1/2, z1/2; (v) x+2, y+1, z+2; (vi) x+1/2, y+1/2, z+1/2; (vii) x1/2, y+1/2, z+1/2; (viii) x, y, z+1.
(kdn200) top
Crystal data top
KN3O4F(000) = 288
Mr = 145.13Dx = 2.240 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.6029 (4) ÅCell parameters from 2788 reflections
b = 9.1694 (5) Åθ = 5.9–23.8°
c = 7.1731 (4) ŵ = 1.15 mm1
β = 97.805 (1)°T = 200 K
V = 430.27 (4) Å30.34 × 0.14 × 0.08 mm
Z = 4
Data collection top
Platform
diffractometer
1060 independent reflections
Radiation source: Sealed Tube911 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 28.3°, θmin = 3.6°
Absorption correction: empirical :Multipole Expansion (Blessing, 1995)
?
h = 87
Tmin = 0.723, Tmax = 0.990k = 1212
3510 measured reflectionsl = 89
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.032Secondary atom site location: difference Fourier map
wR(F2) = 0.077Calculated w = 1/[σ2(Fo2) + (0.0462P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
1060 reflectionsΔρmax = 0.36 e Å3
73 parametersΔρmin = 0.35 e Å3
Crystal data top
KN3O4V = 430.27 (4) Å3
Mr = 145.13Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.6029 (4) ŵ = 1.15 mm1
b = 9.1694 (5) ÅT = 200 K
c = 7.1731 (4) Å0.34 × 0.14 × 0.08 mm
β = 97.805 (1)°
Data collection top
Platform
diffractometer
1060 independent reflections
Absorption correction: empirical :Multipole Expansion (Blessing, 1995)
?
911 reflections with I > 2σ(I)
Tmin = 0.723, Tmax = 0.990Rint = 0.040
3510 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03273 parameters
wR(F2) = 0.0770 restraints
S = 1.00Δρmax = 0.36 e Å3
1060 reflectionsΔρmin = 0.35 e Å3
Special details top

Experimental. The decay correction was applied simultaneously with the absorption correction in SADABS. No formal measure of the extent of decay is printed out by this program. The final unit cell is obtained from the refinement of the XYZ weighted centroids of reflections above 20 σ(I).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.85932 (5)0.34264 (4)0.83074 (5)0.02090 (14)
O41.0087 (2)0.34421 (13)1.2144 (2)0.0251 (3)
O20.7270 (2)0.53812 (13)1.1565 (2)0.0277 (3)
N20.6490 (2)0.46223 (14)1.2684 (2)0.0198 (3)
O10.4642 (2)0.46145 (14)1.2792 (2)0.0287 (3)
N10.7587 (2)0.3766 (2)1.4063 (2)0.0212 (3)
N30.9489 (2)0.34099 (13)1.3703 (2)0.0170 (3)
O31.0607 (2)0.29491 (13)1.5113 (2)0.0233 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0205 (2)0.0264 (2)0.0162 (2)0.00291 (12)0.00371 (13)0.00034 (11)
O40.0227 (6)0.0392 (7)0.0144 (6)0.0030 (5)0.0065 (5)0.0009 (4)
O20.0301 (7)0.0266 (6)0.0256 (6)0.0020 (5)0.0014 (5)0.0090 (5)
N20.0218 (7)0.0182 (6)0.0189 (6)0.0008 (5)0.0014 (5)0.0021 (5)
O10.0178 (6)0.0345 (7)0.0336 (7)0.0055 (5)0.0030 (5)0.0029 (5)
N10.0208 (7)0.0240 (7)0.0196 (7)0.0055 (5)0.0061 (5)0.0033 (5)
N30.0192 (7)0.0180 (6)0.0140 (6)0.0015 (4)0.0031 (5)0.0008 (4)
O30.0244 (6)0.0295 (6)0.0150 (5)0.0043 (5)0.0012 (4)0.0014 (5)
Geometric parameters (Å, º) top
K1—O42.7945 (13)O2—N21.227 (2)
K1—O3i2.8020 (12)O2—K1v2.9318 (13)
K1—O1ii2.8206 (13)N2—O11.233 (2)
K1—O3iii2.8348 (12)N2—N11.388 (2)
K1—O1iv2.9087 (13)N2—K1vii3.4503 (14)
K1—O4i2.9097 (13)O1—K1ii2.8206 (13)
K1—O2v2.9318 (13)O1—K1vii2.9086 (13)
K1—O4v3.0309 (13)N1—N31.356 (2)
K1—N1iii3.0427 (14)N1—K1viii3.0427 (14)
K1—O23.1610 (14)N1—K1vii3.3014 (15)
K1—N3i3.2354 (13)N3—O31.242 (2)
K1—N1iv3.3014 (15)N3—K1vi3.2354 (13)
O4—N31.236 (2)N3—K1viii3.4335 (13)
O4—K1vi2.9097 (13)O3—K1vi2.8020 (12)
O4—K1v3.0309 (13)O3—K1viii2.8348 (12)
O4—K1—O3i73.95 (4)O4v—K1—N3i139.36 (3)
O4—K1—O1ii115.14 (4)N1iii—K1—N3i93.97 (4)
O3i—K1—O1ii82.07 (4)O2—K1—N3i84.92 (3)
O4—K1—O3iii130.94 (4)O4—K1—N1iv70.99 (3)
O3i—K1—O3iii137.81 (3)O3i—K1—N1iv104.29 (4)
O1ii—K1—O3iii107.02 (4)O1ii—K1—N1iv172.49 (4)
O4—K1—O1iv94.11 (4)O3iii—K1—N1iv65.60 (3)
O3i—K1—O1iv79.74 (4)O1iv—K1—N1iv40.41 (3)
O1ii—K1—O1iv139.41 (3)O4i—K1—N1iv105.98 (4)
O3iii—K1—O1iv66.64 (4)O2v—K1—N1iv60.13 (3)
O4—K1—O4i116.50 (4)O4v—K1—N1iv111.07 (4)
O3i—K1—O4i44.36 (3)N1iii—K1—N1iv106.71 (4)
O1ii—K1—O4i75.63 (4)O2—K1—N1iv121.24 (3)
O3iii—K1—O4i96.86 (4)N3i—K1—N1iv109.19 (3)
O1iv—K1—O4i65.99 (3)N3—O4—K1141.04 (10)
O4—K1—O2v76.39 (4)N3—O4—K1vi93.78 (8)
O3i—K1—O2v149.84 (4)K1—O4—K1vi116.11 (4)
O1ii—K1—O2v115.99 (4)N3—O4—K1v104.54 (9)
O3iii—K1—O2v62.97 (3)K1—O4—K1v88.16 (3)
O1iv—K1—O2v97.16 (4)K1vi—O4—K1v111.06 (4)
O4i—K1—O2v158.44 (4)N2—O2—K1v131.56 (10)
O4—K1—O4v91.84 (3)N2—O2—K1110.16 (9)
O3i—K1—O4v134.94 (4)K1v—O2—K183.38 (4)
O1ii—K1—O4v65.45 (4)O2—N2—O1123.48 (13)
O3iii—K1—O4v83.50 (3)O2—N2—N1124.19 (14)
O1iv—K1—O4v144.86 (4)O1—N2—N1112.15 (13)
O4i—K1—O4v139.14 (3)O2—N2—K1vii146.47 (10)
O2v—K1—O4v50.94 (3)O1—N2—K1vii54.30 (8)
O4—K1—N1iii169.98 (4)N1—N2—K1vii72.18 (8)
O3i—K1—N1iii115.90 (4)N2—O1—K1ii134.19 (10)
O1ii—K1—N1iii66.48 (4)N2—O1—K1vii105.56 (9)
O3iii—K1—N1iii43.08 (3)K1ii—O1—K1vii117.49 (4)
O1iv—K1—N1iii89.67 (4)N3—N1—N2114.07 (12)
O4i—K1—N1iii73.51 (4)N3—N1—K1viii94.82 (8)
O2v—K1—N1iii93.95 (4)N2—N1—K1viii142.47 (10)
O4v—K1—N1iii79.81 (4)N3—N1—K1vii124.21 (9)
O4—K1—O250.58 (3)N2—N1—K1vii84.23 (9)
O3i—K1—O268.34 (3)K1viii—N1—K1vii99.38 (4)
O1ii—K1—O264.58 (3)O4—N3—O3121.16 (13)
O3iii—K1—O2153.14 (3)O4—N3—N1125.77 (12)
O1iv—K1—O2137.05 (3)O3—N3—N1112.95 (12)
O4i—K1—O2104.89 (3)O4—N3—K1vi63.82 (8)
O2v—K1—O296.62 (4)O3—N3—K1vi58.83 (7)
O4v—K1—O269.76 (3)N1—N3—K1vi161.88 (9)
N1iii—K1—O2129.58 (3)O4—N3—K1viii171.22 (10)
O4—K1—N3i95.98 (3)O3—N3—K1viii51.62 (7)
O3i—K1—N3i22.30 (3)N1—N3—K1viii62.01 (7)
O1ii—K1—N3i75.19 (4)K1vi—N3—K1viii110.02 (4)
O3iii—K1—N3i118.74 (4)N3—O3—K1vi98.87 (9)
O1iv—K1—N3i74.28 (3)N3—O3—K1viii108.28 (9)
O4i—K1—N3i22.41 (3)K1vi—O3—K1viii151.63 (4)
O2v—K1—N3i168.29 (3)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y+1, z+2; (iii) x, y, z1; (iv) x+1/2, y+1/2, z1/2; (v) x+2, y+1, z+2; (vi) x+1/2, y+1/2, z+1/2; (vii) x1/2, y+1/2, z+1/2; (viii) x, y, z+1.
(kdn250) top
Crystal data top
KN3O4F(000) = 288
Mr = 145.13Dx = 2.217 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.6114 (1) ÅCell parameters from 2693 reflections
b = 9.2299 (2) Åθ = 6.3–23.4°
c = 7.1878 (2) ŵ = 1.14 mm1
β = 97.639 (1)°T = 250 K
V = 434.73 (2) Å30.34 × 0.14 × 0.08 mm
Z = 4
Data collection top
Platform
diffractometer
1073 independent reflections
Radiation source: Sealed Tube882 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 28.3°, θmin = 3.6°
Absorption correction: empirical :Multipole Expansion (Blessing, 1995)
?
h = 78
Tmin = 0.685, Tmax = 0.990k = 1212
3613 measured reflectionsl = 98
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.033Secondary atom site location: difference Fourier map
wR(F2) = 0.081Calculated w = 1/[σ2(Fo2) + (0.045P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
1073 reflectionsΔρmax = 0.31 e Å3
73 parametersΔρmin = 0.43 e Å3
Crystal data top
KN3O4V = 434.73 (2) Å3
Mr = 145.13Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.6114 (1) ŵ = 1.14 mm1
b = 9.2299 (2) ÅT = 250 K
c = 7.1878 (2) Å0.34 × 0.14 × 0.08 mm
β = 97.639 (1)°
Data collection top
Platform
diffractometer
1073 independent reflections
Absorption correction: empirical :Multipole Expansion (Blessing, 1995)
?
882 reflections with I > 2σ(I)
Tmin = 0.685, Tmax = 0.990Rint = 0.045
3613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03373 parameters
wR(F2) = 0.0810 restraints
S = 1.00Δρmax = 0.31 e Å3
1073 reflectionsΔρmin = 0.43 e Å3
Special details top

Experimental. The decay correction was applied simultaneously with the absorption correction in SADABS. No formal measure of the extent of decay is printed out by this program. The final unit cell is obtained from the refinement of the XYZ weighted centroids of reflections above 20 σ(I).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.85870 (6)0.34234 (4)0.82994 (5)0.02730 (15)
O41.0075 (2)0.34456 (14)1.2139 (2)0.0323 (3)
O20.7276 (2)0.53794 (14)1.1571 (2)0.0363 (3)
N20.6491 (2)0.46221 (15)1.2686 (2)0.0259 (3)
O10.4645 (2)0.46136 (15)1.2790 (2)0.0377 (3)
N10.7581 (2)0.3764 (2)1.4055 (2)0.0270 (3)
N30.9479 (2)0.34133 (14)1.3694 (2)0.0220 (3)
O31.0592 (2)0.29509 (14)1.5097 (2)0.0302 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0263 (2)0.0343 (2)0.0216 (2)0.00368 (13)0.00464 (14)0.00040 (13)
O40.0283 (7)0.0506 (8)0.0193 (6)0.0042 (5)0.0078 (5)0.0017 (5)
O20.0385 (8)0.0343 (7)0.0349 (7)0.0024 (5)0.0009 (6)0.0117 (5)
N20.0276 (7)0.0244 (7)0.0252 (7)0.0010 (5)0.0017 (6)0.0030 (5)
O10.0236 (7)0.0456 (8)0.0435 (8)0.0074 (5)0.0035 (6)0.0045 (6)
N10.0263 (8)0.0312 (8)0.0248 (7)0.0065 (6)0.0076 (6)0.0040 (6)
N30.0236 (7)0.0238 (7)0.0188 (7)0.0017 (5)0.0038 (5)0.0008 (5)
O30.0301 (7)0.0390 (7)0.0202 (6)0.0061 (5)0.0015 (5)0.0019 (5)
Geometric parameters (Å, º) top
K1—O42.8043 (14)O2—N21.229 (2)
K1—O3i2.8070 (13)O2—K1v2.9398 (14)
K1—O1ii2.8313 (13)N2—O11.233 (2)
K1—O3iii2.8386 (13)N2—N11.387 (2)
K1—O4i2.9235 (13)N2—K1vii3.4652 (15)
K1—O1iv2.9238 (15)O1—K1ii2.8313 (13)
K1—O2v2.9399 (14)O1—K1vii2.9238 (15)
K1—O4v3.0508 (14)N1—N31.354 (2)
K1—N1iii3.051 (2)N1—K1viii3.051 (2)
K1—O23.175 (2)N1—K1vii3.311 (2)
K1—N3i3.2457 (14)N3—O31.242 (2)
K1—N1iv3.311 (2)N3—K1vi3.2457 (14)
O4—N31.233 (2)N3—K1viii3.4391 (14)
O4—K1vi2.9235 (13)O3—K1vi2.8070 (13)
O4—K1v3.0508 (14)O3—K1viii2.8385 (13)
O4—K1—O3i74.16 (4)O4v—K1—N3i139.57 (4)
O4—K1—O1ii114.88 (4)N1iii—K1—N3i93.86 (4)
O3i—K1—O1ii82.18 (4)O2—K1—N3i85.32 (3)
O4—K1—O3iii131.20 (4)O4—K1—N1iv71.05 (3)
O3i—K1—O3iii137.55 (3)O3i—K1—N1iv104.18 (4)
O1ii—K1—O3iii106.89 (4)O1ii—K1—N1iv172.59 (4)
O4—K1—O4i116.52 (4)O3iii—K1—N1iv65.86 (4)
O3i—K1—O4i44.16 (3)O4i—K1—N1iv105.82 (4)
O1ii—K1—O4i75.95 (4)O1iv—K1—N1iv40.28 (3)
O3iii—K1—O4i96.71 (4)O2v—K1—N1iv60.38 (4)
O4—K1—O1iv94.11 (4)O4v—K1—N1iv111.03 (4)
O3i—K1—O1iv79.60 (4)N1iii—K1—N1iv106.86 (4)
O1ii—K1—O1iv139.74 (3)O2—K1—N1iv121.04 (4)
O3iii—K1—O1iv66.79 (4)N3i—K1—N1iv108.99 (3)
O4i—K1—O1iv65.96 (4)N3—O4—K1141.14 (10)
O4—K1—O2v76.28 (4)N3—O4—K1vi93.71 (9)
O3i—K1—O2v149.94 (4)K1—O4—K1vi115.97 (4)
O1ii—K1—O2v115.66 (4)N3—O4—K1v104.38 (10)
O3iii—K1—O2v63.30 (4)K1—O4—K1v88.50 (4)
O4i—K1—O2v158.60 (4)K1vi—O4—K1v111.00 (4)
O1iv—K1—O2v97.32 (4)N2—O2—K1v131.65 (11)
O4—K1—O4v91.50 (4)N2—O2—K1109.88 (10)
O3i—K1—O4v135.04 (4)K1v—O2—K183.85 (4)
O1ii—K1—O4v65.40 (4)O2—N2—O1123.39 (14)
O3iii—K1—O4v83.61 (4)O2—N2—N1124.24 (14)
O4i—K1—O4v139.43 (3)O1—N2—N1112.22 (14)
O1iv—K1—O4v144.86 (4)O2—N2—K1vii146.44 (11)
O2v—K1—O4v50.65 (4)O1—N2—K1vii54.36 (8)
O4—K1—N1iii169.96 (4)N1—N2—K1vii72.00 (9)
O3i—K1—N1iii115.68 (4)N2—O1—K1ii134.11 (11)
O1ii—K1—N1iii66.50 (4)N2—O1—K1vii105.60 (10)
O3iii—K1—N1iii42.97 (3)K1ii—O1—K1vii117.64 (4)
O4i—K1—N1iii73.52 (4)N3—N1—N2114.05 (13)
O1iv—K1—N1iii89.86 (4)N3—N1—K1viii94.73 (9)
O2v—K1—N1iii94.09 (4)N2—N1—K1viii142.32 (10)
O4v—K1—N1iii80.02 (4)N3—N1—K1vii124.19 (10)
O4—K1—O250.33 (4)N2—N1—K1vii84.51 (9)
O3i—K1—O268.74 (4)K1viii—N1—K1vii99.45 (4)
O1ii—K1—O264.58 (4)O4—N3—O3121.17 (14)
O3iii—K1—O2152.97 (4)O4—N3—N1125.71 (13)
O4i—K1—O2105.20 (4)O3—N3—N1112.98 (13)
O1iv—K1—O2136.99 (4)O4—N3—K1vi64.01 (8)
O2v—K1—O296.15 (4)O3—N3—K1vi58.63 (8)
O4v—K1—O269.47 (3)N1—N3—K1vi161.65 (10)
N1iii—K1—O2129.58 (4)O4—N3—K1viii171.18 (11)
O4—K1—N3i96.09 (4)O3—N3—K1viii51.55 (8)
O3i—K1—N3i22.20 (3)N1—N3—K1viii62.16 (8)
O1ii—K1—N3i75.46 (4)K1vi—N3—K1viii109.76 (4)
O3iii—K1—N3i118.48 (4)N3—O3—K1vi99.17 (9)
O4i—K1—N3i22.29 (3)N3—O3—K1viii108.40 (9)
O1iv—K1—N3i74.16 (3)K1vi—O3—K1viii151.25 (5)
O2v—K1—N3i168.32 (4)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y+1, z+2; (iii) x, y, z1; (iv) x+1/2, y+1/2, z1/2; (v) x+2, y+1, z+2; (vi) x+1/2, y+1/2, z+1/2; (vii) x1/2, y+1/2, z+1/2; (viii) x, y, z+1.
(kdn298) top
Crystal data top
KN3O4F(000) = 288
Mr = 145.13Dx = 2.199 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.6162 (2) ÅCell parameters from 2568 reflections
b = 9.2831 (2) Åθ = 5.0–27.9°
c = 7.2000 (3) ŵ = 1.13 mm1
β = 97.583 (1)°T = 298 K
V = 438.35 (2) Å30.34 × 0.14 × 0.08 mm
Z = 4
Data collection top
Platform
diffractometer
1084 independent reflections
Radiation source: Sealed Tube854 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scansθmax = 28.3°, θmin = 3.6°
Absorption correction: empirical :Multipole Expansion (Blessing, 1995)
?
h = 87
Tmin = 0.283, 0.231297, 0.279919, 0.867434, 0.000387, 0.319426, 0.255290, 0.282944, Tmax = 0.990, 0.830643, 0.977935, 3.122036, 0.219526, 1.116071, 0.904643, 0.990283k = 1212
3648 measured reflectionsl = 89
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.039Secondary atom site location: difference Fourier map
wR(F2) = 0.100Calculated w = 1/[σ2(Fo2) + (0.0528P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
1084 reflectionsΔρmax = 0.43 e Å3
73 parametersΔρmin = 0.38 e Å3
Crystal data top
KN3O4V = 438.35 (2) Å3
Mr = 145.13Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.6162 (2) ŵ = 1.13 mm1
b = 9.2831 (2) ÅT = 298 K
c = 7.2000 (3) Å0.34 × 0.14 × 0.08 mm
β = 97.583 (1)°
Data collection top
Platform
diffractometer
1084 independent reflections
Absorption correction: empirical :Multipole Expansion (Blessing, 1995)
?
854 reflections with I > 2σ(I)
Tmin = 0.283, 0.231297, 0.279919, 0.867434, 0.000387, 0.319426, 0.255290, 0.282944, Tmax = 0.990, 0.830643, 0.977935, 3.122036, 0.219526, 1.116071, 0.904643, 0.990283Rint = 0.057
3648 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03973 parameters
wR(F2) = 0.1000 restraints
S = 0.98Δρmax = 0.43 e Å3
1084 reflectionsΔρmin = 0.38 e Å3
Special details top

Experimental. The decay correction was applied simultaneously with the absorption correction in SADABS. No formal measure of the extent of decay is printed out by this program. The final unit cell is obtained from the refinement of the XYZ weighted centroids of reflections above 20 σ(I).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.85793 (7)0.34205 (5)0.82918 (7)0.0341 (2)
O41.0067 (3)0.3452 (2)1.2134 (2)0.0409 (4)
O20.7282 (3)0.5379 (2)1.1588 (3)0.0455 (4)
N20.6491 (3)0.4622 (2)1.2679 (3)0.0321 (4)
O10.4650 (2)0.4611 (2)1.2786 (3)0.0472 (5)
N10.7576 (3)0.3765 (2)1.4044 (3)0.0328 (4)
N30.9470 (3)0.3414 (2)1.3683 (2)0.0279 (4)
O31.0578 (2)0.2952 (2)1.5078 (2)0.0377 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0340 (3)0.0406 (3)0.0296 (3)0.0047 (2)0.0113 (2)0.0006 (2)
O40.0374 (9)0.0612 (11)0.0269 (9)0.0045 (7)0.0148 (7)0.0022 (7)
O20.0484 (11)0.0407 (9)0.0472 (11)0.0032 (7)0.0053 (8)0.0145 (7)
N20.0337 (9)0.0285 (9)0.0346 (10)0.0009 (7)0.0065 (8)0.0033 (7)
O10.0327 (9)0.0525 (10)0.0575 (12)0.0101 (7)0.0100 (8)0.0044 (8)
N10.0330 (10)0.0364 (10)0.0316 (10)0.0073 (7)0.0146 (8)0.0047 (7)
N30.0300 (9)0.0294 (9)0.0259 (9)0.0016 (6)0.0102 (7)0.0021 (6)
O30.0388 (9)0.0458 (9)0.0285 (8)0.0076 (7)0.0042 (7)0.0022 (7)
Geometric parameters (Å, º) top
K1—O3i2.810 (2)O2—N21.222 (3)
K1—O42.812 (2)O2—K1v2.947 (2)
K1—O1ii2.841 (2)N2—O11.230 (2)
K1—O3iii2.846 (2)N2—N11.388 (2)
K1—O4i2.933 (2)O1—K1ii2.841 (2)
K1—O1iv2.936 (2)O1—K1vii2.936 (2)
K1—O2v2.947 (2)N1—N31.353 (2)
K1—N1iii3.060 (2)N1—K1viii3.060 (2)
K1—O4v3.066 (2)N1—K1vii3.320 (2)
K1—O23.196 (2)N3—O31.239 (2)
K1—N3i3.252 (2)N3—K1vi3.251 (2)
K1—N1iv3.320 (2)N3—K1viii3.446 (2)
O4—N31.232 (2)O3—K1vi2.810 (2)
O4—K1vi2.933 (2)O3—K1viii2.846 (2)
O4—K1v3.066 (2)
O3i—K1—O474.39 (5)O1iv—K1—N3i74.17 (4)
O3i—K1—O1ii82.25 (5)O2v—K1—N3i168.46 (5)
O4—K1—O1ii114.53 (5)N1iii—K1—N3i93.89 (5)
O3i—K1—O3iii137.32 (4)O4v—K1—N3i139.76 (4)
O4—K1—O3iii131.43 (5)O2—K1—N3i85.63 (4)
O1ii—K1—O3iii106.85 (5)O3i—K1—N1iv104.12 (5)
O3i—K1—O4i43.96 (4)O4—K1—N1iv71.22 (4)
O4—K1—O4i116.55 (5)O1ii—K1—N1iv172.66 (5)
O1ii—K1—O4i76.38 (5)O3iii—K1—N1iv66.02 (4)
O3iii—K1—O4i96.55 (5)O4i—K1—N1iv105.56 (5)
O3i—K1—O1iv79.57 (5)O1iv—K1—N1iv40.05 (4)
O4—K1—O1iv94.19 (5)O2v—K1—N1iv60.62 (4)
O1ii—K1—O1iv140.16 (4)N1iii—K1—N1iv106.86 (5)
O3iii—K1—O1iv66.85 (5)O4v—K1—N1iv110.99 (5)
O4i—K1—O1iv65.92 (5)O2—K1—N1iv120.85 (5)
O3i—K1—O2v150.23 (5)N3i—K1—N1iv108.83 (4)
O4—K1—O2v76.35 (5)N3—O4—K1141.10 (14)
O1ii—K1—O2v115.29 (5)N3—O4—K1vi93.57 (12)
O3iii—K1—O2v63.39 (5)K1—O4—K1vi115.77 (5)
O4i—K1—O2v158.53 (5)N3—O4—K1v104.52 (12)
O1iv—K1—O2v97.33 (5)K1—O4—K1v88.87 (5)
O3i—K1—N1iii115.58 (5)K1vi—O4—K1v111.02 (6)
O4—K1—N1iii169.78 (5)N2—O2—K1v132.35 (14)
O1ii—K1—N1iii66.64 (5)N2—O2—K1109.28 (13)
O3iii—K1—N1iii42.79 (4)K1v—O2—K184.10 (5)
O4i—K1—N1iii73.66 (5)O2—N2—O1123.8 (2)
O1iv—K1—N1iii90.02 (5)O2—N2—N1124.0 (2)
O2v—K1—N1iii93.90 (5)O1—N2—N1112.0 (2)
O3i—K1—O4v135.12 (5)N2—O1—K1ii133.82 (14)
O4—K1—O4v91.13 (5)N2—O1—K1vii105.85 (12)
O1ii—K1—O4v65.33 (5)K1ii—O1—K1vii117.73 (6)
O3iii—K1—O4v83.70 (5)N3—N1—N2114.1 (2)
O4i—K1—O4v139.79 (4)N3—N1—K1viii94.71 (12)
O1iv—K1—O4v144.76 (5)N2—N1—K1viii142.29 (13)
O2v—K1—O4v50.37 (5)N3—N1—K1vii124.01 (12)
N1iii—K1—O4v80.14 (5)N2—N1—K1vii84.75 (11)
O3i—K1—O269.05 (4)K1viii—N1—K1vii99.33 (5)
O4—K1—O249.97 (4)O4—N3—O3121.2 (2)
O1ii—K1—O264.58 (5)O4—N3—N1125.6 (2)
O3iii—K1—O2152.87 (5)O3—N3—N1113.1 (2)
O4i—K1—O2105.53 (5)O4—N3—K1vi64.21 (11)
O1iv—K1—O2136.90 (5)O3—N3—K1vi58.48 (10)
O2v—K1—O295.90 (5)N1—N3—K1vi161.67 (12)
N1iii—K1—O2129.70 (4)O4—N3—K1viii171.05 (14)
O4v—K1—O269.28 (4)O3—N3—K1viii51.55 (10)
O3i—K1—N3i22.09 (4)N1—N3—K1viii62.25 (10)
O4—K1—N3i96.21 (5)K1vi—N3—K1viii109.61 (5)
O1ii—K1—N3i75.71 (5)N3—O3—K1vi99.44 (12)
O3iii—K1—N3i118.29 (5)N3—O3—K1viii108.51 (12)
O4i—K1—N3i22.22 (4)K1vi—O3—K1viii150.91 (6)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y+1, z+2; (iii) x, y, z1; (iv) x+1/2, y+1/2, z1/2; (v) x+2, y+1, z+2; (vi) x+1/2, y+1/2, z+1/2; (vii) x1/2, y+1/2, z+1/2; (viii) x, y, z+1.

Experimental details

(kdn85)(kdn100)(kdn150)(kdn200)
Crystal data
Chemical formulaKN3O4KN3O4KN3O4KN3O4
Mr145.13145.13145.13145.13
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/nMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)85100150200
a, b, c (Å)6.5891 (4), 9.0653 (5), 7.1459 (4)6.5918 (4), 9.0778 (5), 7.1540 (4)6.6010 (3), 9.1253 (5), 7.1657 (4)6.6029 (4), 9.1694 (5), 7.1731 (4)
β (°) 97.975 (2) 97.946 (2) 97.890 (1) 97.805 (1)
V3)422.71 (4)423.98 (4)427.55 (4)430.27 (4)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)1.171.171.161.15
Crystal size (mm)0.34 × 0.14 × 0.080.34 × 0.14 × 0.080.34 × 0.14 × 0.080.34 × 0.14 × 0.08
Data collection
DiffractometerPlatform
diffractometer
Platform
diffractometer
Platform
diffractometer
Platform
diffractometer
Absorption correctionEmpirical :Multipole Expansion (Blessing, 1995)Empirical :Multipole Expansion (Blessing, 1995)Empirical: Multipole Expansion (Blessing, 1995)Empirical :Multipole Expansion (Blessing, 1995)
Tmin, Tmax0.791, 0.9900.768, 0.9900.780, 0.9900.723, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
3515, 1034, 902 3547, 1041, 918 3517, 1046, 917 3510, 1060, 911
Rint0.0480.0460.0400.040
(sin θ/λ)max1)0.6680.6680.6670.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.075, 1.02 0.029, 0.068, 1.00 0.030, 0.072, 1.04 0.032, 0.077, 1.00
No. of reflections1034104110461060
No. of parameters73737373
Δρmax, Δρmin (e Å3)0.55, 0.600.53, 0.600.36, 0.390.36, 0.35


(kdn250)(kdn298)
Crystal data
Chemical formulaKN3O4KN3O4
Mr145.13145.13
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)250298
a, b, c (Å)6.6114 (1), 9.2299 (2), 7.1878 (2)6.6162 (2), 9.2831 (2), 7.2000 (3)
β (°) 97.639 (1) 97.583 (1)
V3)434.73 (2)438.35 (2)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.141.13
Crystal size (mm)0.34 × 0.14 × 0.080.34 × 0.14 × 0.08
Data collection
DiffractometerPlatform
diffractometer
Platform
diffractometer
Absorption correctionEmpirical :Multipole Expansion (Blessing, 1995)Empirical :Multipole Expansion (Blessing, 1995)
Tmin, Tmax0.685, 0.9900.283, 0.231297, 0.279919, 0.867434, 0.000387, 0.319426, 0.255290, 0.282944, 0.990, 0.830643, 0.977935, 3.122036, 0.219526, 1.116071, 0.904643, 0.990283
No. of measured, independent and
observed [I > 2σ(I)] reflections
3613, 1073, 882 3648, 1084, 854
Rint0.0450.057
(sin θ/λ)max1)0.6680.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.081, 1.00 0.039, 0.100, 0.98
No. of reflections10731084
No. of parameters7373
Δρmax, Δρmin (e Å3)0.31, 0.430.43, 0.38

Computer programs: Siemens SMART, Siemens SAINT, SHELXS86 (Sheldrick, 1990), SHELXL93 (Sheldrick, 1993), Siemens SHELXTL and the Toledo cifomatic.

 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds