research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of cis-7,8-dihy­dr­oxy-5,10,15,20-tetra­phenyl­chlorin and its zinc(II)–ethyl­enedi­amine complex

crossmark logo

aDepartment of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA, and bDepartment of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
*Correspondence e-mail: c.bruckner@uconn.edu

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 21 February 2022; accepted 10 March 2022; online 15 March 2022)

The title chlorin, 2PhH2, hydrogen-bonded to di­methyl­amino­pyridine (DMAP), C44H32N4O2·C7H10N2, and its corresponding zinc(II) complex, 2PhZn, axially coordinated to ethyl­enedi­amine (EDA), [Zn(C44H30N4O2)]·C2H8N2, were isolated and crystallized by adventitious reduction of the corresponding osmate esters by DMAP and EDA, respectively. Known since 1996 and, inter alia, used for the preparation of a wide range of (planar and non-planar) chlorin analogues (so-called pyrrole-modified porphyrins), their conformational analyses in the solid state are important benchmarks. Both macrocycles are only modestly distorted from planarity and both are slightly more non-planar than the corresponding dimeth­oxy-derivative, but less planar than a free-base meso-penta­fluoro­phenyl-based osmate ester. NSD analyses provide qu­anti­tative and qualitative analyses of the distortion modes. One origin of the non-planarity is presumably the avoidance of the eclipsed configuration of the two vic–cis diols on the pyrroline moiety; the resulting deformation of the pyrroline translates in some cases into the macrocycle. The structure of 2PhH2 features voids making up ca 26% of the unit-cell volume filled with highly disordered solvate mol­ecules (chloro­form and hexa­nes). 2PhZn crystallized with a 13.6 (4)% occupied solvate methanol mol­ecule.

1. Chemical context

The study of synthetic chlorins as functional, spectroscopic, or structural models for nature's premiere light-harvesting pigment chloro­phyll is one of the central aspects in contemporary porphyrinoid chemistry (Flitsch, 1988[Flitsch, W. (1988). Adv. Heterocycl. Chem. 43, 73-126.]; Liu et al., 2018[Liu, Y., Zhang, S. & Lindsey, J. S. (2018). Nat. Prod. Rep. 35, 879-901.]; Taniguchi & Lindsey, 2017[Taniguchi, M. & Lindsey, J. S. (2017). Chem. Rev. 117, 344-535.]; Lindsey, 2015[Lindsey, J. S. (2015). Chem. Rev. 115, 6534-6620.]). Because of the facility of the synthesis of a wide range of meso-tetra­aryl­porphyrins, their conversion to chlorins has been widely studied (Flitsch, 1988[Flitsch, W. (1988). Adv. Heterocycl. Chem. 43, 73-126.]; Taniguchi & Lindsey, 2017[Taniguchi, M. & Lindsey, J. S. (2017). Chem. Rev. 117, 344-535.]).

We contributed to the field the description of the OsO4-mediated di­hydroxy­lation of meso-tetra­aryl­porphyrins 1ArM, generating the corresponding chlorin diols 2ArM (Fig. 1[link]) (Brückner & Dolphin, 1995a[Brückner, C. & Dolphin, D. (1995a). Tetrahedron Lett. 36, 3295-3298.]; Brückner et al., 1998[Brückner, C., Rettig, S. J. & Dolphin, D. (1998). J. Org. Chem. 63, 2094-2098.]). Depending on the stoichiometric ratio of OsO4 used and whether the porphyrin metal complex or free base is used, the reaction may also lead to the regioselective formation of tetra­hydroxy­metalloisobacteriochlorins or tetra­hydroxy­bacteriochlorins, respectively (Brückner & Dolphin, 1995b[Brückner, C. & Dolphin, D. (1995b). Tetrahedron Lett. 36, 9425-9428.]; Samankumara et al., 2010[Samankumara, L. P., Zeller, M., Krause, J. A. & Brückner, C. (2010). Org. Biomol. Chem. 8, 1951-1965.]; Hyland et al., 2012[Hyland, M. A., Morton, M. D. & Brückner, C. (2012). J. Org. Chem. 77, 3038-3048.]; Bruhn & Brückner, 2015[Bruhn, T. & Brückner, C. (2015). J. Org. Chem. 80, 4861-4868.]). Chlorin diols 2ArH2 have shown efficacy as photosensitizers in photodynamic therapy (Macalpine et al., 2002[Macalpine, J. K., Boch, R. & Dolphin, D. (2002). J. Porphyrins Phthalocyanines, 06, 146-155.]) or are substrates toward their oxidation to the corres­ponding diones (Starnes et al., 2000[Starnes, S. D., Rudkevich, D. M. & Rebek, J. Jr (2000). Org. Lett. 2, 1995-1998.], 2001[Starnes, S. D., Rudkevich, D. M. & Rebek, J. Jr (2001). J. Am. Chem. Soc. 123, 4659-4669.]; Daniell et al., 2003[Daniell, H. W., Williams, S. C., Jenkins, H. A. & Brückner, C. (2003). Tetrahedron Lett. 44, 4045-4049.]). Importantly, chlorin diols 2ArM are the starting materials for the generation of a wide range of planar and non-planar chlorin analogues (so-called pyrrole-modified porphyrins) (Brückner, 2016[Brückner, C. (2016). Acc. Chem. Res. 49, 1080-1092.]; Sharma et al., 2017[Sharma, M., Ticho, A. L., Samankumara, L., Zeller, M. & Brückner, C. (2017). Inorg. Chem. 56, 11490-11502.]; Hewage et al., 2019[Hewage, N., Daddario, P., Lau, K. S. F., Guberman-Pfeffer, M. J., Gascón, J. A., Zeller, M., Lee, C. O., Khalil, G. E., Gouterman, M. & Brückner, C. (2019). J. Org. Chem. 84, 239-256.]; Brückner et al., 2020[Brückner, C., Atoyebi, A. O., Girouard, D., Lau, K. S. F., Akhigbe, J., Samankumara, L., Damunupola, D., Khalil, G. E., Gouterman, M., Krause, J. A. & Zeller, M. (2020). Eur. J. Org. Chem. pp. 475-482.]; Luciano et al., 2020[Luciano, M. P., Atoyebi, A. O., Tardie, W., Zeller, M. & Brückner, C. (2020). J. Org. Chem. 85, 15273-15286.]; Wu et al., 2020[Wu, Z.-Y., Xue, H., Wang, T., Guo, Y., Meng, Y.-S., Li, X., Zheng, J., Brückner, C., Rao, G., Britt, R. D. & Zhang, J.-L. (2020). ACS Catal. 10, 2177-2188.]), whereby the parent chlorin diols 2PhH2 and 2PhZn generally serve as spectroscopic benchmarks. Since the conformation of a porphyrinic macrocycle greatly influences its electronic structure, the structural characterization of the benchmark compounds 2PhH2 and 2PhZn is important. Curiously, however, even though these fundamental compounds are known since 1996, crystals suitable for single X-ray crystal structure analyses could not be grown to date. However, related derivatives, such as osmate ester 3FH2 (Hewage et al., 2019[Hewage, N., Daddario, P., Lau, K. S. F., Guberman-Pfeffer, M. J., Gascón, J. A., Zeller, M., Lee, C. O., Khalil, G. E., Gouterman, M. & Brückner, C. (2019). J. Org. Chem. 84, 239-256.]), a number of tetra­hydroxy­bacteriochlorins and isobacteriochlorins (Samankumara et al., 2010[Samankumara, L. P., Zeller, M., Krause, J. A. & Brückner, C. (2010). Org. Biomol. Chem. 8, 1951-1965.]), and a number of alkyl­ated diol free base and metal complexes 4ArM (M = 2H, Ni, Cu, Zn, Pd) (Samankumara et al., 2010[Samankumara, L. P., Zeller, M., Krause, J. A. & Brückner, C. (2010). Org. Biomol. Chem. 8, 1951-1965.]; Sharma et al., 2017[Sharma, M., Ticho, A. L., Samankumara, L., Zeller, M. & Brückner, C. (2017). Inorg. Chem. 56, 11490-11502.]) could be structurally characterized.

[Scheme 1]
[Figure 1]
Figure 1
Synthetic pathways towards 2PhH2·DMAP and 2PhZn·EDA and their meth­oxy ethers.

In due course of working with the inter­mediate osmate esters and attempts to form crystals of the amine adducts, we inadvertently reduced the osmate ester and the long-sought parent free base meso-phenyl chlorin diol 2PhH2, as 2PhH2·DMAP hydrogen-bonded to DMAP (4-di­methyl­amino­pyridine) and the zinc(II) complex 2PhZn, in the form 2PhZn·EDA in which the metal is axially coordinated to ethyl­enedi­amine (EDA), crystallized in single-crystal X-ray diffraction quality.

2. Structural commentary

The structures of both 2PhH2·DMAP and 2PhZn·EDA confirm the cis–vic stereochemistry of the diol functionality and the near-perpendicular arrangement of the meso-phenyl groups – structural features well known for these types of meso-aryl­chlorin diols (Hewage et al., 2019[Hewage, N., Daddario, P., Lau, K. S. F., Guberman-Pfeffer, M. J., Gascón, J. A., Zeller, M., Lee, C. O., Khalil, G. E., Gouterman, M. & Brückner, C. (2019). J. Org. Chem. 84, 239-256.]; Samankumara et al., 2010[Samankumara, L. P., Zeller, M., Krause, J. A. & Brückner, C. (2010). Org. Biomol. Chem. 8, 1951-1965.]; Sharma et al., 2017[Sharma, M., Ticho, A. L., Samankumara, L., Zeller, M. & Brückner, C. (2017). Inorg. Chem. 56, 11490-11502.]) or meso-aryl­porphyrinoids, in general (Senge, 2000[Senge, M. O. (2000). The Porphyrin Handbook, edited by K. M. Kadish, K. M. Smith & R. Guilard, pp. 1-218. San Diego: Academic Press.]) (Figs. 2[link] and 3[link]).

[Figure 2]
Figure 2
X-ray structure of 2PhH2·DMAP with the atom-labeling scheme for non-H atoms. 50% probability ellipsoids.
[Figure 3]
Figure 3
X-ray structure of the zinc(II) complex 2PhZn·EDA, with the atom-labeling scheme for non-H atoms. 50% probability ellipsoids. Dashed bonds indicate the minor disordered amine [11.8 (12)% occupancy], and the partially occupied MeOH solvate [13.6 (4)% occupancy]. Atom labels for the backwards pointing phenyl ring (C21–C26) are omitted for clarity.

Importantly, the structures allow the determination of the conformation of their chromophores. The dissection of the conformation of 2PhH2·DMAP using a normal mode structural decomposition (NSD) analysis (Kingsbury & Senge, 2021[Kingsbury, C. J. & Senge, M. O. (2021). Coord. Chem. Rev. 431, 213760.]; Shelnutt et al., 1998[Shelnutt, J. A., Song, X.-Z., Ma, J.-G., Jentzen, W. & Medforth, C. J. (1998). Chem. Soc. Rev. 27, 31-41.]) shows that its chromophore exhibits a considerable saddling distortion. In comparison, the dimeth­oxy derivative 4PhH2 (Samankumara et al., 2010[Samankumara, L. P., Zeller, M., Krause, J. A. & Brückner, C. (2010). Org. Biomol. Chem. 8, 1951-1965.]) is more planar, with only very modest distortions evenly spread over a number of distortion modes (Fig. 4[link]a). In 4PhH2, both meth­oxy substituents point toward the outside, whereas the corresponding hy­droxy groups in 2PhH2·DMAP point in opposite directions, with only the hydrogen-bonded (to DMAP) hy­droxy group pointing outwards. A slight deformation of the pyrroline moiety in 2PhH2·DMAP alleviates the steric inter­actions between the two hy­droxy groups [26.65 (13)° O—C—C—O torsion angle] that would be otherwise forced to be eclipsed. The corresponding torsion angle in 4PhH2 is slightly smaller [17.23 (17)°; Samankumara et al., 2010[Samankumara, L. P., Zeller, M., Krause, J. A. & Brückner, C. (2010). Org. Biomol. Chem. 8, 1951-1965.]]. This vic--cis-substituents-induced pyrroline deformation was also observed previously (Sharma et al., 2017[Sharma, M., Ticho, A. L., Samankumara, L., Zeller, M. & Brückner, C. (2017). Inorg. Chem. 56, 11490-11502.]; Hewage et al., 2019[Hewage, N., Daddario, P., Lau, K. S. F., Guberman-Pfeffer, M. J., Gascón, J. A., Zeller, M., Lee, C. O., Khalil, G. E., Gouterman, M. & Brückner, C. (2019). J. Org. Chem. 84, 239-256.]).

[Figure 4]
Figure 4
Normal mode Structural Decomposition (NSD) analysis (Kingsbury & Senge, 2021[Kingsbury, C. J. & Senge, M. O. (2021). Coord. Chem. Rev. 431, 213760.]) of (a), the chromophore conformations of di­hydroxy­chlorin 2PhH2·DMAP (hydrogen-bonded to DMAP) in comparison to the conformation of the chromophore of di­meth­oxy­chlorin 4PhH2 (Samankumara et al., 2010[Samankumara, L. P., Zeller, M., Krause, J. A. & Brückner, C. (2010). Org. Biomol. Chem. 8, 1951-1965.]), and (b), the equivalent chromophore conformation analysis of 2PhZn·EDA in comparison to the closely related dimeth­oxy derivative 4CF3Zn (Sharma et al., 2017[Sharma, M., Ticho, A. L., Samankumara, L., Zeller, M. & Brückner, C. (2017). Inorg. Chem. 56, 11490-11502.]).

The out-of-plane plots (Kingsbury & Senge, 2021[Kingsbury, C. J. & Senge, M. O. (2021). Coord. Chem. Rev. 431, 213760.]) of the two free-base chlorins 2PhH2·DMAP and 4PhH2 also illustrate the qualitative and qu­anti­tative differences in the conformations of the two (Fig. 5[link]a).

[Figure 5]
Figure 5
Out-of-plane plots (Kingsbury & Senge, 2021[Kingsbury, C. J. & Senge, M. O. (2021). Coord. Chem. Rev. 431, 213760.]) of the chromophore conformations of (a), di­hydroxy­chlorin 2PhH2·DMAP and di­meth­oxy­chlorin 4PhH2 (Samankumara et al., 2010[Samankumara, L. P., Zeller, M., Krause, J. A. & Brückner, C. (2010). Org. Biomol. Chem. 8, 1951-1965.]), and (b), the equivalent plots of 2PhZn·EDA and 4CF3Zn·py (Sharma et al., 2017[Sharma, M., Ticho, A. L., Samankumara, L., Zeller, M. & Brückner, C. (2017). Inorg. Chem. 56, 11490-11502.]). The atoms indicated in red are the pyrroline β-carbons carrying the cis-hy­droxy or meth­oxy groups.

The saddling deformation is more pronounced in the corresponding zinc(II) complexes but the deformation modes observed in either of the complexes are very similar (Fig. 4[link]b and 5b). This (small) B2u deformation mode is typical for penta-coordinated, square-pyramidal porphyrinoid zinc(II) complexes (Kingsbury & Senge, 2021[Kingsbury, C. J. & Senge, M. O. (2021). Coord. Chem. Rev. 431, 213760.]). The differences in conformation quality and qu­antity is only minimal between the parent compound 2PhZn·EDA and its p-aryl-substituted and methyl­ated analogue 4CF3Zn·py. In addition, both mol­ecules carry their axial ligand on the same hemisphere defined by the macrocycle the diol/dimeth­oxy moieties are located. Nonetheless, there are differences. For instance, a smaller O—C—C—O torsion angle was observed in the diol zinc complex 2PhZn·EDA [O—Cβ—Cβ—O dihedral angle = 7.86 (17)°], whereas the corresponding angle in the dimeth­oxy derivative 4CF3Zn is 28.1 (4)°(Sharma et al., 2017[Sharma, M., Ticho, A. L., Samankumara, L., Zeller, M. & Brückner, C. (2017). Inorg. Chem. 56, 11490-11502.]).

In neither the free base nor the zinc complex of the diol chlorins are any significant in-plane deformations observed. The change in the macrocycle conformation upon methyl­ation and/or hydrogen bonding to an amine acceptor reiterates the conformational malleability of the chlorin chromophore (Kratky et al., 1985[Kratky, C., Waditschatka, R., Angst, C., Johansen, J. E., Plaquevent, J. C., Schreiber, J. & Eschenmoser, A. (1985). Helv. Chim. Acta, 68, 1312-1337.]), as previously also shown in the varying conformations of a range of transition-metal complexes (Sharma et al., 2017[Sharma, M., Ticho, A. L., Samankumara, L., Zeller, M. & Brückner, C. (2017). Inorg. Chem. 56, 11490-11502.]).

3. Supra­molecular features

The dominant supra­molecular inter­actions in both 2PhH2·DMAP and 2PhZn·EDA are hydrogen-bonding inter­actions between the hydroxyl functions of the chlorin mol­ecules, and the DMAP and EDA bases incorporated into the crystal structure.

In 2PhH2·DMAP one of the hydroxyl groups acts as a donor towards the DMAP with O1—H1O⋯N5 = 2.6968 (14) Å. O1 in turn acts as acceptor for an O—H⋯O bond originating from O2 of a neighboring mol­ecule. A symmetry-equivalent inter­action (by inversion) connects the other two oxygen atoms of the same two mol­ecules with each other, creating an inversion-symmetric dimer (Fig. 6[link]). A number of additional inter­actions that augment the strong hydrogen bonds, among them C—H⋯O, C—H⋯N and C–H⋯π inter­actions, are listed in the hydrogen-bonding Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °) for 2PhH2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N5 0.973 (17) 1.727 (17) 2.6968 (14) 174.1 (14)
O2—H2O⋯O1i 0.927 (17) 1.882 (17) 2.7798 (12) 162.5 (14)
N1—H1N⋯N2 0.925 (15) 2.346 (15) 2.9064 (13) 118.7 (11)
N1—H1N⋯N4 0.925 (15) 2.383 (15) 2.9518 (13) 119.6 (11)
N3—H3N⋯N2 0.915 (16) 2.292 (16) 2.8868 (13) 122.3 (12)
N3—H3N⋯N4 0.915 (16) 2.458 (15) 2.9766 (14) 116.1 (12)
C37—H37⋯O2ii 0.95 2.51 3.3840 (16) 153
C38—H38⋯C48ii 0.95 2.77 3.6779 (19) 161
C50—H50B⋯N4ii 0.98 2.57 3.544 (2) 171
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+2, -y+1, -z+1].
[Figure 6]
Figure 6
Hydrogen bonding and packing of 2PhH2·DMAP. 50% probability ellipsoids. Symmetry code: (i) 1 − x, 1 − y, 1 − z.

The structure of 2PhH2·DMAP also contains 647 Å3 (ca 26% of the unit-cell volume) of solvent-accessible voids occupied by highly disordered solvent mol­ecules that could not be properly modeled or refined (Fig. 7[link]). The content of these voids, presumably chloro­form and hexane, the crystallization solvents, were instead included in the model via reverse-Fourier-transform methods using the SQUEEZE routine (van der Sluis & Spek, 1990[Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.]; Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) as implemented in the program PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), and added as additional not-model-based structure-factor contributions. The procedure corrected for 162 electrons within the solvent-accessible voids.

[Figure 7]
Figure 7
Solvent-accessible voids in 2PhH2·DMAP. The void volume is 647 Å3, or ca 26% of the unit-cell volume.

Hydrogen bonding in 2PhZn·EDA is similar to that of 2PhH2·DMAP, but more complex. In contrast to the DMAP mol­ecule in 2PhH2·DMAP, the amino NH2 groups of the ethyl­ene di­amine in 2PhZn·EDA can act as both hydrogen-bond acceptors as well as hydrogen-bond donors. One of the two amine moieties of the EDA base is axially coordinated to the zinc center of the chlorin complex, and is thus not available as a hydrogen-bond acceptor. The partially occupied methanol mol­ecule also takes part in hydrogen-bonding inter­actions, and the disorder of the not-metal-coordinated amino group further complicates the hydrogen-bonding network of 2PhZn·EDA.

The two hydroxyl groups again both act as hydrogen-bond donors, and similar to in 2PhH2·DMAP they form an inversion-symmetric dimer (Fig. 8[link]). O1 again acts as a hydrogen-bond donor towards the base, here the disordered amino group, of the other mol­ecule of the dimer. Different from the DMAP mol­ecule, which lacks acidic H atoms, the amines also act as hydrogen-bond donors. The metal-coordinated amine creates an N—H⋯O bond that provides an additional connection within the dimer to create a 3D hydrogen-bonding network between the two mol­ecules (Fig. 8[link]).

[Figure 8]
Figure 8
Hydrogen bonding and packing of 2PhZn·EDA. 50% probability ellipsoids. Symmetry code: (i) 1 − x, 1 − y, 1 − z. 50% ellipsoids for fully occupied and major occupancy non-H atoms. Others in capped stick mode. Phenyl and pyrrole H atoms are omitted for clarity.

Several `terminal' hydrogen bonds or hydrogen-bond-like inter­actions cap off the not yet used acidic and basic atoms, which are listed in the hydrogen-bonding Table 2[link] (inter­actions not shown). The second amine H atom of the metal-coordin­ated NH2 group is engaged in an N—H⋯π inter­action towards the π-density of C29 of the phenyl ring of a neighboring mol­ecule. The major moiety of the disordered amino group hydrogen bonds with the partially occupied methanol mol­ecule. However, this inter­action is not always present, as the occupancy of the MeOH mol­ecule is only 13.6 (4)%, while that of the amino group is 88.2 (12)%. The second amino H atom is not involved in any directional inter­actions. One of the H atoms of the minor amino moiety might be engaged in another N—H⋯π inter­action towards the π-density of C43 and C43 of a phenyl ring of the second dimer mol­ecule, but the exact positions of the amino H atoms are not determined accurately given the low occupancy of the amino fragment [11.8 (12)%]. The same is true for the position of the methanol hydroxyl H atom, which appears to be engaged in a weak O—H⋯π inter­action with the porphyrinic π-system of a mol­ecule at −1 + x, y, z. O3, the methanol oxygen atom, acts as acceptor for a C—H⋯O inter­action originating from a phenyl C atom of a mol­ecule not part of the dimer. The H⋯O distance is unusually short for a C—H⋯O inter­action, 2.53 Å, which could be an artifact of the low occupancy of the methanol mol­ecule.

Table 2
Hydrogen-bond geometry (Å, °) for 2PhZn[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N6i 0.99 1.73 2.710 (3) 168
O1—H1⋯N6Bi 0.99 1.54 2.510 (17) 165
O2—H2A⋯O1i 0.99 1.82 2.8056 (18) 171
C2—H2⋯O3i 1.00 2.53 3.460 (14) 155
N5—H5A⋯O1i 0.88 (2) 2.38 (2) 3.2442 (18) 166 (2)
C46—H46A⋯N2 0.99 2.49 3.368 (2) 148
N6—H6A⋯O3 0.90 (2) 2.08 (2) 2.932 (14) 159 (3)
C46B—H46C⋯N2 0.99 2.68 3.368 (2) 126
O3—H3O⋯N4ii 0.84 2.20 2.992 (14) 157
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x-1, y, z].

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.43, Nov 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for meso-tetra­aryl­chlorins or their metal(II) complexes revealed in excess of 75 structures, but few are directly comparable to the title compounds: Most examples contain a variety of bulky substituents or annulated rings at the pyrroline positions [the closest being an imidazolone-annulated di­hydroxy­chlorin, TAKDUI (Luciano et al. 2020[Luciano, M. P., Atoyebi, A. O., Tardie, W., Zeller, M. & Brückner, C. (2020). J. Org. Chem. 85, 15273-15286.])] or contain other (sterically encumbering) subs­tit­uents at the pyrrolic β-positions or on the meso-aryl groups. Most metallochlorins contain also a different metal than zinc(II). Only a few compounds are structurally closely related to 2PhH2·DMAP or 2PhZn·EDA. Among them is the parent non-hy­droxy­lated chlorin zinc chelate [5,10,15,20-tetra­phenyl­chlorinato]zinc(II)·pyridine complex (HPORZN10; Spaulding et al., 1977[Spaulding, L. D., Andrews, L. C. & Williams, G. J. B. (1977). J. Am. Chem. Soc. 99, 6918-6923.]), the bis-β-n-butyl­ated free base and zinc(II) chlorins (QAKLUJ and QAKMAQ, respectively; Senge et al., 2000[Senge, M. O., Kalisch, W. W. & Bischoff, I. (2000). Chem. Eur. J. 6, 2721-2738.]), free base 5,10,15,20-tetra­phenyl-7-hy­droxy­chlorin (SAZSAP; Samankumara et al., 2010[Samankumara, L. P., Zeller, M., Krause, J. A. & Brückner, C. (2010). Org. Biomol. Chem. 8, 1951-1965.]), the β-nitrated analogue of 2PhH2 (TIPBIF; Worlinsky et al., 2013[Worlinsky, J. L., Zarate, G., Zeller, M., Ghandehari, M., Khalil, G. & Brückner, C. (2013). J. Porphyrins Phthalocyanines, 17, 836-849.]), dimeth­oxy derivatives 4PhH2 (SAZROC; Samankumara et al., 2010[Samankumara, L. P., Zeller, M., Krause, J. A. & Brückner, C. (2010). Org. Biomol. Chem. 8, 1951-1965.]) and 4CF3Zn·py (PEDKER; Sharma et al., 2017[Sharma, M., Ticho, A. L., Samankumara, L., Zeller, M. & Brückner, C. (2017). Inorg. Chem. 56, 11490-11502.]), osmate ester 3FH2 (SIZFUF; Hewage et al., 2019[Hewage, N., Daddario, P., Lau, K. S. F., Guberman-Pfeffer, M. J., Gascón, J. A., Zeller, M., Lee, C. O., Khalil, G. E., Gouterman, M. & Brückner, C. (2019). J. Org. Chem. 84, 239-256.]), and trans-7,8-diol-7,8-di­methyl­tetra­phenyl­chlorin (ZAZNIZ; Banerjee et al., 2012[Banerjee, S., Zeller, M. & Brückner, C. (2012). J. Porphyrins Phthalocyanines, 16, 576-588.]).

5. Synthesis and crystallization

The OsO4-mediated di­hydroxy­lation of porphyrin 1H2 is a two-step sequence: the formation of the osmate ester 3ArH2 in the first step is followed by the reduction of the osmate ester to the target di­hydroxy­chlorin 2ArH2 (often performed as a two-step, one-pot process) (Brückner & Dolphin, 1995b[Brückner, C. & Dolphin, D. (1995b). Tetrahedron Lett. 36, 9425-9428.]; Samankumara et al., 2010[Samankumara, L. P., Zeller, M., Krause, J. A. & Brückner, C. (2010). Org. Biomol. Chem. 8, 1951-1965.]; Hyland et al., 2012[Hyland, M. A., Morton, M. D. & Brückner, C. (2012). J. Org. Chem. 77, 3038-3048.]). Here, we prepared the inter­mediate meso-tetra­phenyl-2,3-vic-di­hydroxy­chlorin osmate ester according to the established oxidation of meso-tetra­phenyl­porphyrins 1PhH2 (Brückner et al., 1998[Brückner, C., Rettig, S. J. & Dolphin, D. (1998). J. Org. Chem. 63, 2094-2098.]). Metalation of the free base 1PhH2 using Zn(OAc)2·2H2O under standard conditions (Buchler, 1978[Buchler, J. W. (1978). The Porphyrins, edited by D. Dolphin, pp. 389-483, New York: Academic Press.]) (refluxing CHCl3/MeOH for 35-40 min) formed the corresponding ZnII osmate ester 3PhZn.

While crystallizing the osmate esters in CH2Cl2 and layering with the non-solvent hexane in the presence of DMAP (for 3PhH2) or by allowing a solution of the ester in CH2Cl2/MeOH to slowly evaporate in the presence of EDA (for 3PhZn), both osmate esters adventitiously reduced and diols 2PhH2·DMAP and 2PhZn·EDA crystallized, respectively. The spectroscopic data of both known chromophores are as described previously (Brückner et al., 1998[Brückner, C., Rettig, S. J. & Dolphin, D. (1998). J. Org. Chem. 63, 2094-2098.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C—H bond distances were constrained to 0.95 Å for aromatic and alkene C—H groups, and to 1.00, 0.99 and 0.98 Å for aliphatic C—H, CH2 and CH3 groups, respectively. Positions of N—H and NH2 hydrogen atoms were refined. N—H distances within NH2 groups in 2PhZn·EDA were restrained to 0.88 (2) Å and H—N—H and H–N–C angles were restrained to be similar to each other. Methyl CH3 and hydroxyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. The hydroxyl H atom of the partially occupied methanol mol­ecule in 2PhZn·EDA was restrained to hydrogen bond to a porphyrin N atom of a neighboring complex. Uiso(H) values were set to a multiple of Ueq(C/O/N) with 1.5 for CH3 and OH, and 1.2 for C–H, CH2, N—H and NH2 units, respectively.

Table 3
Experimental details

  2PhH2 2PhZn
Crystal data
Chemical formula C44H32N4O2·C7H10N2·[+solvent] [Zn(C44H30N4O2)]·C2H8N2·0.136CH4O
Mr 770.90 776.57
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 150 150
a, b, c (Å) 10.0193 (4), 15.2554 (8), 17.7983 (10) 10.1249 (3), 13.5400 (4), 27.0447 (8)
α, β, γ (°) 69.918 (2), 74.926 (2), 84.140 (2) 90, 95.1464 (11), 90
V3) 2466.9 (2) 3692.64 (19)
Z 2 4
Radiation type Mo Kα Cu Kα
μ (mm−1) 0.06 1.32
Crystal size (mm) 0.33 × 0.21 × 0.19 0.27 × 0.25 × 0.18
 
Data collection
Diffractometer Bruker AXS D8 Quest diffractometer with PhotonII charge-integrating pixel array detector (CPAD) Bruker AXS D8 Quest diffractometer with PhotonIII-C14 charge-integrating and photon counting pixel array detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.665, 0.746 0.606, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 48645, 14738, 9891 21319, 7551, 7037
Rint 0.060 0.024
(sin θ/λ)max−1) 0.714 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.133, 1.04 0.031, 0.088, 1.04
No. of reflections 14738 7551
No. of parameters 549 549
No. of restraints 0 17
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.21 0.31, −0.44
Computer programs: APEX4 (Bruker, 2021[Bruker (2021). APEX4. Bruker Nano Inc., Madison, Wisconsin, USA.]), APEX3 and SAINT (Bruker, 2019[Bruker (2019). APEX3 and SAINT. Bruker Nano Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

In the structure of 2PhZn·EDA, disorder of the not-metal-coordinated amino group of the ethyl­ene di­amine mol­ecule is observed and a methanol solvate mol­ecule is partially occupied. The C—N bonds were restrained to be similar in length. A partially occupied methanol mol­ecule is located nearby the major disordered amino group and hydrogen-bonded to it. The hydroxyl H atom was restrained to hydrogen bond to a porphyrin N atom of a neighboring complex. Subject to these conditions, the occupancy ratio for the amino groups refined to 0.882 (12): 0.118 (12), and the occupancy rate for the methanol mol­ecule refined to 0.136 (4). The occupancy of the methanol mol­ecule is not correlated with the disorder of the amino group (the major 88% occupied amino group is hydrogen-bonded to the 14% occupied methanol mol­ecule).

The structure of 2PhH2·DMAP contains 647 Å3 of solvent-accessible voids occupied by highly disordered solvate mol­ecules (presumably chloro­form and hexane, the crystallization solvents). The residual electron-density peaks are not arranged in an inter­pretable pattern and no unambiguous disorder model could be developed. The structure factors were instead augmented via reverse-Fourier-transform methods using the SQUEEZE routine (van Sluis & Spek, 1990[Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.]; Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]), as implemented in the program PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). The resultant .fab file containing the structure-factor contribution from the electron content of the void space was used in together with the original hkl file in the further refinement. The SQUEEZE procedure accounted for 162 electrons within the solvent-accessible voids.

Supporting information


Computing details top

Data collection: APEX4 (Bruker, 2021) for 2PhH2; APEX3 (Bruker, 2019) for 2PhZn. For both structures, cell refinement: SAINT (Bruker, 2019); data reduction: SAINT (Bruker, 2019). Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for 2PhH2; SHELXS97 (Sheldrick, 2008) for 2PhZn. For both structures, program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b), ShelXle (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

cis-7,8-Dihydroxy-5,10,15,20-tetraphenylchlorin dimethylaminopyridine monosolvate (2PhH2) top
Crystal data top
C44H32N4O2·C7H10N2·[+solvent]Z = 2
Mr = 770.90F(000) = 812
Triclinic, P1Dx = 1.038 Mg m3
a = 10.0193 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.2554 (8) ÅCell parameters from 9960 reflections
c = 17.7983 (10) Åθ = 2.4–31.9°
α = 69.918 (2)°µ = 0.06 mm1
β = 74.926 (2)°T = 150 K
γ = 84.140 (2)°Fragment, black
V = 2466.9 (2) Å30.33 × 0.21 × 0.19 mm
Data collection top
Bruker AXS D8 Quest
diffractometer with PhotonII charge-integrating pixel array detector (CPAD)
14738 independent reflections
Radiation source: fine focus sealed tube X-ray source9891 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromatorRint = 0.060
Detector resolution: 7.4074 pixels mm-1θmax = 30.5°, θmin = 2.2°
ω and phi scansh = 1414
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2121
Tmin = 0.665, Tmax = 0.746l = 2525
48645 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: mixed
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0604P)2 + 0.2687P]
where P = (Fo2 + 2Fc2)/3
14738 reflections(Δ/σ)max = 0.001
549 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure contains 647 Ang3 of solvent accessible voids occupied by highly disordered solvate molecules (presumably chloroform and hexane, the crystallization solvents). The residual electron density peaks are not arranged in an interpretable pattern and no unambiguous disorder model could be developed. The structure factors were instead augmented via reverse Fourier transform methods using the SQUEEZE routine (P. van der Sluis & A.L. Spek (1990). Acta Cryst. A46, 194-201) as implemented in the program Platon. The resultant FAB file containing the structure factor contribution from the electron content of the void space was used in together with the original hkl file in the further refinement. (The FAB file with details of the Squeeze results is appended to this cif file). The Squeeze procedure corrected for 162 electrons within the solvent accessible voids.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.62197 (8)0.52783 (6)0.53614 (5)0.03032 (18)
H1O0.6812 (16)0.5788 (11)0.4973 (10)0.045*
O20.65897 (9)0.42954 (6)0.42876 (5)0.03175 (18)
H2O0.5704 (17)0.4513 (11)0.4458 (10)0.048*
N10.43218 (10)0.14254 (6)0.68820 (6)0.02595 (19)
H1N0.4495 (15)0.1795 (10)0.7162 (9)0.039*
N20.37812 (10)0.12770 (6)0.86064 (6)0.02649 (19)
N30.55460 (10)0.28307 (7)0.82259 (6)0.0283 (2)
H3N0.5129 (16)0.2577 (11)0.7949 (10)0.042*
N40.59891 (9)0.30953 (6)0.64424 (6)0.02597 (19)
N50.79133 (13)0.66232 (8)0.42197 (8)0.0513 (3)
N61.09618 (14)0.82611 (9)0.22875 (8)0.0542 (3)
C10.48576 (12)0.15869 (8)0.60568 (7)0.0272 (2)
C20.43926 (14)0.08451 (8)0.58748 (8)0.0344 (3)
H20.4616620.0761270.5351180.041*
C30.35751 (13)0.02790 (8)0.65773 (7)0.0329 (3)
H30.3127200.0265200.6627820.039*
C40.35068 (11)0.06429 (7)0.72235 (7)0.0261 (2)
C50.27900 (11)0.02833 (7)0.80485 (7)0.0258 (2)
C60.28682 (11)0.06218 (8)0.86799 (7)0.0258 (2)
C70.20051 (12)0.02932 (8)0.95097 (7)0.0292 (2)
H70.1282910.0146870.9708520.035*
C80.24279 (12)0.07350 (8)0.99458 (7)0.0300 (2)
H80.2060400.0666571.0511300.036*
C90.35477 (11)0.13318 (8)0.93846 (7)0.0270 (2)
C100.42982 (12)0.18860 (8)0.96202 (7)0.0282 (2)
C110.52658 (12)0.25542 (8)0.90752 (7)0.0293 (2)
C120.60953 (13)0.31160 (9)0.92638 (8)0.0349 (3)
H120.6145960.3073630.9800810.042*
C130.68056 (13)0.37261 (9)0.85413 (8)0.0344 (3)
H130.7427690.4185000.8489830.041*
C140.64544 (12)0.35568 (8)0.78779 (7)0.0290 (2)
C150.69121 (11)0.40654 (7)0.70330 (7)0.0266 (2)
C160.66552 (11)0.38612 (7)0.63837 (7)0.0256 (2)
C170.71366 (11)0.44961 (8)0.54998 (7)0.0269 (2)
H170.8109940.4697240.5382720.032*
C180.70357 (11)0.38542 (8)0.50137 (7)0.0271 (2)
H180.7982570.3592680.4854280.033*
C190.61540 (11)0.30561 (7)0.56736 (7)0.0258 (2)
C200.56811 (11)0.23380 (8)0.54904 (7)0.0267 (2)
C210.18885 (12)0.05389 (8)0.82851 (7)0.0277 (2)
C220.21160 (13)0.13703 (8)0.88883 (8)0.0340 (3)
H220.2867680.1420880.9134830.041*
C230.12514 (15)0.21243 (9)0.91308 (9)0.0418 (3)
H230.1414900.2687610.9541850.050*
C240.01525 (14)0.20589 (10)0.87763 (9)0.0428 (3)
H240.0443110.2573640.8947130.051*
C250.00731 (13)0.12454 (10)0.81758 (9)0.0392 (3)
H250.0823070.1201610.7929400.047*
C260.07881 (12)0.04862 (9)0.79264 (8)0.0321 (2)
H260.0625270.0071350.7509180.039*
C270.40379 (12)0.17673 (9)1.05123 (7)0.0306 (2)
C280.42357 (13)0.09033 (9)1.10829 (8)0.0350 (3)
H280.4532850.0380151.0904740.042*
C290.39991 (14)0.08048 (11)1.19136 (8)0.0438 (3)
H290.4133170.0213331.2300080.053*
C300.35704 (17)0.15613 (13)1.21802 (9)0.0518 (4)
H300.3415470.1490101.2747660.062*
C310.33677 (18)0.24209 (12)1.16204 (9)0.0532 (4)
H310.3071520.2941341.1802740.064*
C320.35962 (15)0.25240 (10)1.07935 (8)0.0409 (3)
H320.3450990.3116591.0411960.049*
C330.77693 (12)0.48962 (8)0.68495 (7)0.0277 (2)
C340.71456 (13)0.57598 (9)0.68111 (8)0.0357 (3)
H340.6173500.5831990.6875790.043*
C350.79380 (15)0.65217 (10)0.66780 (9)0.0435 (3)
H350.7505700.7112860.6647130.052*
C360.93499 (15)0.64211 (10)0.65908 (9)0.0443 (3)
H360.9884040.6939010.6512940.053*
C370.99855 (14)0.55681 (11)0.66166 (9)0.0444 (3)
H371.0958100.5499260.6550540.053*
C380.91967 (13)0.48109 (9)0.67397 (9)0.0379 (3)
H380.9638080.4226990.6748880.045*
C390.61114 (12)0.23285 (8)0.46200 (7)0.0285 (2)
C400.51769 (14)0.25180 (9)0.41304 (8)0.0353 (3)
H400.4245910.2675890.4340440.042*
C410.55892 (15)0.24792 (10)0.33351 (8)0.0408 (3)
H410.4940240.2612660.3003570.049*
C420.69418 (15)0.22468 (9)0.30227 (8)0.0405 (3)
H420.7220940.2217020.2479370.049*
C430.78742 (14)0.20604 (10)0.35014 (9)0.0424 (3)
H430.8804240.1903260.3288500.051*
C440.74671 (13)0.20998 (9)0.42957 (8)0.0369 (3)
H440.8122840.1968780.4622730.044*
C450.89678 (18)0.69732 (11)0.43549 (10)0.0546 (4)
H450.9019280.6828420.4910210.065*
C460.99821 (17)0.75277 (10)0.37465 (10)0.0504 (4)
H461.0697800.7757540.3886030.060*
C470.99487 (15)0.77500 (9)0.29192 (9)0.0435 (3)
C480.88343 (15)0.73985 (10)0.27753 (10)0.0484 (4)
H480.8739900.7538890.2228510.058*
C490.78732 (15)0.68461 (10)0.34342 (11)0.0504 (4)
H490.7135600.6610110.3318520.060*
C501.20258 (17)0.86988 (12)0.24494 (12)0.0637 (5)
H50A1.2676950.9014550.1928390.096*
H50B1.2520730.8221610.2810930.096*
H50C1.1598730.9155910.2718360.096*
C511.09541 (19)0.84148 (13)0.14456 (10)0.0656 (5)
H51A1.1840940.8675450.1084360.098*
H51B1.0204730.8853000.1296520.098*
H51C1.0811500.7820710.1381650.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0308 (4)0.0229 (4)0.0316 (4)0.0034 (3)0.0017 (3)0.0053 (3)
O20.0346 (4)0.0310 (4)0.0244 (4)0.0029 (4)0.0022 (3)0.0055 (3)
N10.0303 (5)0.0227 (4)0.0226 (4)0.0058 (4)0.0006 (4)0.0074 (4)
N20.0297 (5)0.0251 (4)0.0228 (5)0.0050 (4)0.0019 (4)0.0075 (4)
N30.0328 (5)0.0262 (5)0.0241 (5)0.0088 (4)0.0024 (4)0.0070 (4)
N40.0278 (4)0.0240 (4)0.0237 (5)0.0044 (4)0.0022 (4)0.0068 (4)
N50.0458 (7)0.0300 (6)0.0536 (8)0.0030 (5)0.0108 (6)0.0007 (5)
N60.0464 (7)0.0388 (6)0.0517 (8)0.0073 (6)0.0050 (6)0.0067 (6)
C10.0315 (5)0.0248 (5)0.0230 (5)0.0046 (4)0.0009 (4)0.0078 (4)
C20.0451 (7)0.0297 (6)0.0270 (6)0.0103 (5)0.0010 (5)0.0120 (5)
C30.0430 (6)0.0273 (5)0.0275 (6)0.0102 (5)0.0015 (5)0.0103 (5)
C40.0301 (5)0.0214 (5)0.0244 (5)0.0051 (4)0.0025 (4)0.0062 (4)
C50.0265 (5)0.0230 (5)0.0256 (5)0.0041 (4)0.0028 (4)0.0066 (4)
C60.0267 (5)0.0248 (5)0.0231 (5)0.0036 (4)0.0025 (4)0.0061 (4)
C70.0281 (5)0.0315 (6)0.0243 (5)0.0077 (5)0.0002 (4)0.0072 (5)
C80.0309 (5)0.0335 (6)0.0222 (5)0.0056 (5)0.0002 (4)0.0082 (5)
C90.0287 (5)0.0258 (5)0.0240 (5)0.0027 (4)0.0026 (4)0.0071 (4)
C100.0323 (5)0.0263 (5)0.0240 (5)0.0040 (4)0.0032 (4)0.0073 (4)
C110.0339 (6)0.0281 (5)0.0250 (5)0.0048 (5)0.0044 (5)0.0083 (4)
C120.0417 (7)0.0355 (6)0.0280 (6)0.0111 (5)0.0069 (5)0.0091 (5)
C130.0386 (6)0.0351 (6)0.0308 (6)0.0118 (5)0.0062 (5)0.0107 (5)
C140.0324 (5)0.0251 (5)0.0285 (6)0.0063 (4)0.0035 (5)0.0087 (4)
C150.0277 (5)0.0227 (5)0.0270 (5)0.0051 (4)0.0025 (4)0.0069 (4)
C160.0252 (5)0.0229 (5)0.0250 (5)0.0037 (4)0.0020 (4)0.0053 (4)
C170.0256 (5)0.0242 (5)0.0256 (5)0.0048 (4)0.0006 (4)0.0044 (4)
C180.0264 (5)0.0264 (5)0.0238 (5)0.0039 (4)0.0002 (4)0.0059 (4)
C190.0256 (5)0.0238 (5)0.0236 (5)0.0023 (4)0.0004 (4)0.0059 (4)
C200.0290 (5)0.0251 (5)0.0227 (5)0.0032 (4)0.0009 (4)0.0071 (4)
C210.0289 (5)0.0266 (5)0.0256 (5)0.0062 (4)0.0013 (4)0.0102 (4)
C220.0375 (6)0.0303 (6)0.0303 (6)0.0087 (5)0.0032 (5)0.0063 (5)
C230.0463 (7)0.0291 (6)0.0406 (7)0.0117 (5)0.0022 (6)0.0059 (5)
C240.0380 (7)0.0378 (7)0.0496 (8)0.0173 (6)0.0082 (6)0.0198 (6)
C250.0302 (6)0.0460 (7)0.0463 (8)0.0084 (5)0.0011 (6)0.0252 (6)
C260.0308 (6)0.0334 (6)0.0328 (6)0.0036 (5)0.0025 (5)0.0146 (5)
C270.0324 (6)0.0347 (6)0.0242 (5)0.0088 (5)0.0044 (5)0.0084 (5)
C280.0312 (6)0.0395 (7)0.0312 (6)0.0064 (5)0.0076 (5)0.0061 (5)
C290.0402 (7)0.0565 (9)0.0297 (7)0.0134 (6)0.0135 (6)0.0006 (6)
C300.0581 (9)0.0730 (11)0.0286 (7)0.0243 (8)0.0086 (7)0.0167 (7)
C310.0709 (10)0.0573 (9)0.0370 (8)0.0205 (8)0.0013 (7)0.0256 (7)
C320.0537 (8)0.0374 (7)0.0320 (7)0.0110 (6)0.0038 (6)0.0139 (5)
C330.0295 (5)0.0276 (5)0.0239 (5)0.0075 (4)0.0009 (4)0.0079 (4)
C340.0327 (6)0.0314 (6)0.0412 (7)0.0070 (5)0.0012 (5)0.0153 (5)
C350.0499 (8)0.0330 (6)0.0470 (8)0.0116 (6)0.0020 (6)0.0193 (6)
C360.0509 (8)0.0459 (8)0.0363 (7)0.0257 (7)0.0007 (6)0.0140 (6)
C370.0332 (6)0.0545 (8)0.0392 (7)0.0189 (6)0.0025 (6)0.0072 (6)
C380.0301 (6)0.0364 (6)0.0413 (7)0.0054 (5)0.0036 (5)0.0076 (6)
C390.0349 (6)0.0239 (5)0.0237 (5)0.0080 (4)0.0015 (5)0.0081 (4)
C400.0376 (6)0.0368 (6)0.0296 (6)0.0028 (5)0.0023 (5)0.0121 (5)
C410.0533 (8)0.0402 (7)0.0308 (7)0.0056 (6)0.0090 (6)0.0134 (6)
C420.0548 (8)0.0362 (7)0.0292 (6)0.0141 (6)0.0052 (6)0.0165 (5)
C430.0393 (7)0.0483 (8)0.0418 (7)0.0106 (6)0.0071 (6)0.0272 (7)
C440.0352 (6)0.0403 (7)0.0374 (7)0.0039 (5)0.0009 (5)0.0204 (6)
C450.0650 (10)0.0410 (8)0.0440 (8)0.0082 (7)0.0077 (8)0.0101 (7)
C460.0550 (9)0.0366 (7)0.0508 (9)0.0091 (6)0.0013 (7)0.0117 (6)
C470.0415 (7)0.0234 (6)0.0466 (8)0.0005 (5)0.0051 (6)0.0006 (5)
C480.0431 (8)0.0367 (7)0.0486 (8)0.0037 (6)0.0048 (6)0.0013 (6)
C490.0368 (7)0.0340 (7)0.0629 (10)0.0013 (6)0.0042 (7)0.0005 (7)
C500.0418 (8)0.0402 (8)0.0829 (13)0.0060 (7)0.0022 (8)0.0046 (8)
C510.0553 (10)0.0607 (10)0.0467 (9)0.0059 (8)0.0061 (8)0.0095 (8)
Geometric parameters (Å, º) top
O1—C171.4214 (14)C23—C241.384 (2)
O1—H1O0.973 (17)C23—H230.9500
O2—C181.4016 (14)C24—C251.375 (2)
O2—H2O0.927 (17)C24—H240.9500
N1—C11.3692 (14)C25—C261.3909 (17)
N1—C41.3797 (14)C25—H250.9500
N1—H1N0.925 (15)C26—H260.9500
N2—C91.3737 (14)C27—C281.3929 (18)
N2—C61.3740 (14)C27—C321.3986 (17)
N3—C141.3714 (14)C28—C291.3916 (18)
N3—C111.3811 (15)C28—H280.9500
N3—H3N0.915 (16)C29—C301.382 (2)
N4—C191.3565 (14)C29—H290.9500
N4—C161.3639 (14)C30—C311.381 (2)
N5—C491.331 (2)C30—H300.9500
N5—C451.340 (2)C31—C321.3843 (19)
N6—C471.3669 (18)C31—H310.9500
N6—C511.437 (2)C32—H320.9500
N6—C501.450 (2)C33—C341.3867 (17)
C1—C201.4062 (15)C33—C381.3910 (17)
C1—C21.4284 (16)C34—C351.3924 (17)
C2—C31.3602 (17)C34—H340.9500
C2—H20.9500C35—C361.381 (2)
C3—C41.4232 (16)C35—H350.9500
C3—H30.9500C36—C371.381 (2)
C4—C51.3970 (15)C36—H360.9500
C5—C61.4101 (16)C37—C381.3891 (19)
C5—C211.4958 (15)C37—H370.9500
C6—C71.4478 (16)C38—H380.9500
C7—C81.3508 (16)C39—C401.3840 (18)
C7—H70.9500C39—C441.3905 (17)
C8—C91.4445 (16)C40—C411.3879 (17)
C8—H80.9500C40—H400.9500
C9—C101.4119 (16)C41—C421.384 (2)
C10—C111.3977 (16)C41—H410.9500
C10—C271.4895 (16)C42—C431.368 (2)
C11—C121.4233 (16)C42—H420.9500
C12—C131.3651 (18)C43—C441.3864 (18)
C12—H120.9500C43—H430.9500
C13—C141.4243 (17)C44—H440.9500
C13—H130.9500C45—C461.377 (2)
C14—C151.4094 (16)C45—H450.9500
C15—C161.3846 (16)C46—C471.402 (2)
C15—C331.4977 (15)C46—H460.9500
C16—C171.5166 (16)C47—C481.402 (2)
C17—C181.5380 (16)C48—C491.383 (2)
C17—H171.0000C48—H480.9500
C18—C191.5298 (15)C49—H490.9500
C18—H181.0000C50—H50A0.9800
C19—C201.4008 (15)C50—H50B0.9800
C20—C391.5008 (15)C50—H50C0.9800
C21—C261.3937 (17)C51—H51A0.9800
C21—C221.3951 (17)C51—H51B0.9800
C22—C231.3884 (17)C51—H51C0.9800
C22—H220.9500
C17—O1—H1O103.8 (9)C25—C24—H24120.2
C18—O2—H2O105.0 (10)C23—C24—H24120.2
C1—N1—C4110.47 (9)C24—C25—C26120.52 (13)
C1—N1—H1N123.8 (9)C24—C25—H25119.7
C4—N1—H1N125.7 (9)C26—C25—H25119.7
C9—N2—C6104.78 (9)C25—C26—C21120.38 (12)
C14—N3—C11110.47 (10)C25—C26—H26119.8
C14—N3—H3N126.2 (10)C21—C26—H26119.8
C11—N3—H3N123.2 (10)C28—C27—C32118.61 (12)
C19—N4—C16108.59 (9)C28—C27—C10120.80 (11)
C49—N5—C45115.86 (13)C32—C27—C10120.58 (11)
C47—N6—C51120.56 (15)C29—C28—C27120.15 (13)
C47—N6—C50120.85 (15)C29—C28—H28119.9
C51—N6—C50118.52 (14)C27—C28—H28119.9
N1—C1—C20127.44 (10)C30—C29—C28120.47 (14)
N1—C1—C2106.31 (10)C30—C29—H29119.8
C20—C1—C2126.24 (10)C28—C29—H29119.8
C3—C2—C1108.53 (10)C31—C30—C29119.90 (13)
C3—C2—H2125.7C31—C30—H30120.1
C1—C2—H2125.7C29—C30—H30120.1
C2—C3—C4108.18 (10)C30—C31—C32119.99 (14)
C2—C3—H3125.9C30—C31—H31120.0
C4—C3—H3125.9C32—C31—H31120.0
N1—C4—C5125.72 (10)C31—C32—C27120.88 (14)
N1—C4—C3106.47 (10)C31—C32—H32119.6
C5—C4—C3127.81 (10)C27—C32—H32119.6
C4—C5—C6125.26 (10)C34—C33—C38118.83 (11)
C4—C5—C21117.43 (10)C34—C33—C15120.39 (10)
C6—C5—C21117.30 (10)C38—C33—C15120.75 (11)
N2—C6—C5125.47 (10)C33—C34—C35120.29 (12)
N2—C6—C7110.91 (9)C33—C34—H34119.9
C5—C6—C7123.59 (10)C35—C34—H34119.9
C8—C7—C6106.56 (10)C36—C35—C34120.24 (13)
C8—C7—H7126.7C36—C35—H35119.9
C6—C7—H7126.7C34—C35—H35119.9
C7—C8—C9106.62 (10)C37—C36—C35120.02 (12)
C7—C8—H8126.7C37—C36—H36120.0
C9—C8—H8126.7C35—C36—H36120.0
N2—C9—C10125.32 (10)C36—C37—C38119.72 (13)
N2—C9—C8111.05 (10)C36—C37—H37120.1
C10—C9—C8123.63 (10)C38—C37—H37120.1
C11—C10—C9124.84 (11)C37—C38—C33120.87 (13)
C11—C10—C27116.86 (10)C37—C38—H38119.6
C9—C10—C27118.30 (10)C33—C38—H38119.6
N3—C11—C10125.39 (10)C40—C39—C44118.43 (11)
N3—C11—C12106.27 (10)C40—C39—C20121.53 (10)
C10—C11—C12128.27 (11)C44—C39—C20120.02 (11)
C13—C12—C11108.35 (11)C39—C40—C41120.53 (12)
C13—C12—H12125.8C39—C40—H40119.7
C11—C12—H12125.8C41—C40—H40119.7
C12—C13—C14108.32 (11)C42—C41—C40120.31 (13)
C12—C13—H13125.8C42—C41—H41119.8
C14—C13—H13125.8C40—C41—H41119.8
N3—C14—C15127.08 (10)C43—C42—C41119.60 (12)
N3—C14—C13106.53 (10)C43—C42—H42120.2
C15—C14—C13126.34 (10)C41—C42—H42120.2
C16—C15—C14126.44 (10)C42—C43—C44120.28 (12)
C16—C15—C33118.94 (10)C42—C43—H43119.9
C14—C15—C33114.62 (10)C44—C43—H43119.9
N4—C16—C15126.10 (10)C43—C44—C39120.86 (13)
N4—C16—C17112.44 (9)C43—C44—H44119.6
C15—C16—C17121.45 (10)C39—C44—H44119.6
O1—C17—C16108.57 (9)N5—C45—C46124.66 (17)
O1—C17—C18112.64 (9)N5—C45—H45117.7
C16—C17—C18101.86 (9)C46—C45—H45117.7
O1—C17—H17111.1C45—C46—C47119.36 (16)
C16—C17—H17111.1C45—C46—H46120.3
C18—C17—H17111.1C47—C46—H46120.3
O2—C18—C19117.07 (9)N6—C47—C46121.97 (15)
O2—C18—C17115.00 (9)N6—C47—C48121.83 (15)
C19—C18—C17102.30 (9)C46—C47—C48116.18 (13)
O2—C18—H18107.3C49—C48—C47119.59 (16)
C19—C18—H18107.3C49—C48—H48120.2
C17—C18—H18107.3C47—C48—H48120.2
N4—C19—C20125.15 (10)N5—C49—C48124.33 (16)
N4—C19—C18112.16 (9)N5—C49—H49117.8
C20—C19—C18122.51 (10)C48—C49—H49117.8
C19—C20—C1126.08 (10)N6—C50—H50A109.5
C19—C20—C39118.64 (10)N6—C50—H50B109.5
C1—C20—C39115.24 (10)H50A—C50—H50B109.5
C26—C21—C22118.64 (11)N6—C50—H50C109.5
C26—C21—C5121.07 (11)H50A—C50—H50C109.5
C22—C21—C5120.27 (11)H50B—C50—H50C109.5
C23—C22—C21120.46 (12)N6—C51—H51A109.5
C23—C22—H22119.8N6—C51—H51B109.5
C21—C22—H22119.8H51A—C51—H51B109.5
C24—C23—C22120.31 (13)N6—C51—H51C109.5
C24—C23—H23119.8H51A—C51—H51C109.5
C22—C23—H23119.8H51B—C51—H51C109.5
C25—C24—C23119.69 (12)
C4—N1—C1—C20176.83 (11)C18—C19—C20—C1179.31 (11)
C4—N1—C1—C22.11 (13)N4—C19—C20—C39171.75 (10)
N1—C1—C2—C31.49 (14)C18—C19—C20—C392.90 (16)
C20—C1—C2—C3177.46 (12)N1—C1—C20—C192.4 (2)
C1—C2—C3—C40.35 (15)C2—C1—C20—C19178.88 (12)
C1—N1—C4—C5179.30 (11)N1—C1—C20—C39179.76 (11)
C1—N1—C4—C31.91 (13)C2—C1—C20—C391.02 (18)
C2—C3—C4—N10.92 (14)C4—C5—C21—C2660.11 (15)
C2—C3—C4—C5179.68 (12)C6—C5—C21—C26121.08 (12)
N1—C4—C5—C65.13 (19)C4—C5—C21—C22121.51 (12)
C3—C4—C5—C6173.41 (12)C6—C5—C21—C2257.30 (15)
N1—C4—C5—C21176.17 (10)C26—C21—C22—C230.72 (18)
C3—C4—C5—C215.30 (18)C5—C21—C22—C23177.70 (11)
C9—N2—C6—C5175.53 (11)C21—C22—C23—C240.0 (2)
C9—N2—C6—C72.71 (12)C22—C23—C24—C250.6 (2)
C4—C5—C6—N28.48 (18)C23—C24—C25—C260.5 (2)
C21—C5—C6—N2170.23 (10)C24—C25—C26—C210.30 (18)
C4—C5—C6—C7173.50 (11)C22—C21—C26—C250.88 (17)
C21—C5—C6—C77.80 (16)C5—C21—C26—C25177.52 (10)
N2—C6—C7—C81.69 (13)C11—C10—C27—C28122.22 (13)
C5—C6—C7—C8176.58 (11)C9—C10—C27—C2858.57 (16)
C6—C7—C8—C90.05 (13)C11—C10—C27—C3257.43 (16)
C6—N2—C9—C10176.68 (11)C9—C10—C27—C32121.78 (13)
C6—N2—C9—C82.75 (12)C32—C27—C28—C290.18 (18)
C7—C8—C9—N21.78 (13)C10—C27—C28—C29179.47 (11)
C7—C8—C9—C10177.66 (11)C27—C28—C29—C300.2 (2)
N2—C9—C10—C119.00 (19)C28—C29—C30—C310.3 (2)
C8—C9—C10—C11171.64 (11)C29—C30—C31—C320.1 (2)
N2—C9—C10—C27171.86 (11)C30—C31—C32—C270.3 (2)
C8—C9—C10—C277.50 (17)C28—C27—C32—C310.4 (2)
C14—N3—C11—C10174.45 (11)C10—C27—C32—C31179.25 (13)
C14—N3—C11—C122.57 (13)C16—C15—C33—C3491.51 (14)
C9—C10—C11—N35.97 (19)C14—C15—C33—C3489.12 (14)
C27—C10—C11—N3173.17 (11)C16—C15—C33—C3890.45 (15)
C9—C10—C11—C12177.67 (12)C14—C15—C33—C3888.92 (14)
C27—C10—C11—C123.18 (19)C38—C33—C34—C351.03 (19)
N3—C11—C12—C131.97 (14)C15—C33—C34—C35177.04 (12)
C10—C11—C12—C13174.93 (12)C33—C34—C35—C360.6 (2)
C11—C12—C13—C140.69 (15)C34—C35—C36—C371.5 (2)
C11—N3—C14—C15175.45 (11)C35—C36—C37—C380.7 (2)
C11—N3—C14—C132.16 (13)C36—C37—C38—C330.9 (2)
C12—C13—C14—N30.87 (14)C34—C33—C38—C371.8 (2)
C12—C13—C14—C15176.76 (12)C15—C33—C38—C37176.26 (12)
N3—C14—C15—C167.9 (2)C19—C20—C39—C40110.08 (13)
C13—C14—C15—C16174.91 (12)C1—C20—C39—C4071.89 (14)
N3—C14—C15—C33172.75 (11)C19—C20—C39—C4471.77 (15)
C13—C14—C15—C334.41 (17)C1—C20—C39—C44106.26 (13)
C19—N4—C16—C15169.25 (11)C44—C39—C40—C410.02 (18)
C19—N4—C16—C179.77 (12)C20—C39—C40—C41178.16 (11)
C14—C15—C16—N44.65 (19)C39—C40—C41—C420.2 (2)
C33—C15—C16—N4174.64 (10)C40—C41—C42—C430.4 (2)
C14—C15—C16—C17176.41 (11)C41—C42—C43—C440.3 (2)
C33—C15—C16—C174.31 (16)C42—C43—C44—C390.0 (2)
N4—C16—C17—O1103.05 (10)C40—C39—C44—C430.12 (19)
C15—C16—C17—O177.88 (13)C20—C39—C44—C43178.09 (12)
N4—C16—C17—C1816.00 (12)C49—N5—C45—C460.4 (2)
C15—C16—C17—C18163.07 (10)N5—C45—C46—C470.6 (2)
O1—C17—C18—O226.65 (13)C51—N6—C47—C46175.09 (14)
C16—C17—C18—O2142.76 (9)C50—N6—C47—C468.1 (2)
O1—C17—C18—C19101.33 (10)C51—N6—C47—C483.3 (2)
C16—C17—C18—C1914.78 (10)C50—N6—C47—C48173.57 (13)
C16—N4—C19—C20176.25 (10)C45—C46—C47—N6176.90 (14)
C16—N4—C19—C181.12 (12)C45—C46—C47—C481.6 (2)
O2—C18—C19—N4137.49 (10)N6—C47—C48—C49176.77 (13)
C17—C18—C19—N410.83 (12)C46—C47—C48—C491.7 (2)
O2—C18—C19—C2047.23 (15)C45—N5—C49—C480.2 (2)
C17—C18—C19—C20173.89 (10)C47—C48—C49—N50.9 (2)
N4—C19—C20—C16.04 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N50.973 (17)1.727 (17)2.6968 (14)174.1 (14)
O2—H2O···O1i0.927 (17)1.882 (17)2.7798 (12)162.5 (14)
N1—H1N···N20.925 (15)2.346 (15)2.9064 (13)118.7 (11)
N1—H1N···N40.925 (15)2.383 (15)2.9518 (13)119.6 (11)
N3—H3N···N20.915 (16)2.292 (16)2.8868 (13)122.3 (12)
N3—H3N···N40.915 (16)2.458 (15)2.9766 (14)116.1 (12)
C37—H37···O2ii0.952.513.3840 (16)153
C38—H38···C48ii0.952.773.6779 (19)161
C50—H50B···N4ii0.982.573.544 (2)171
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
[cis-7,8-Dihydroxy-5,10,15,20-tetraphenylchlorinato(2-)]zinc(II)–ethylenediamine–methanol (1/1/0.136) (2PhZn) top
Crystal data top
[Zn(C44H30N4O2)]·C2H8N2·0.136CH4OF(000) = 1618
Mr = 776.57Dx = 1.397 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 10.1249 (3) ÅCell parameters from 9950 reflections
b = 13.5400 (4) Åθ = 3.3–79.4°
c = 27.0447 (8) ŵ = 1.32 mm1
β = 95.1464 (11)°T = 150 K
V = 3692.64 (19) Å3Block, black
Z = 40.27 × 0.25 × 0.18 mm
Data collection top
Bruker AXS D8 Quest
diffractometer with PhotonIII-C14 charge-integrating and photon counting pixel array detector
7551 independent reflections
Radiation source: I-mu-S microsource X-ray tube7037 reflections with I > 2σ(I)
Laterally graded multilayer (Goebel) mirror monochromatorRint = 0.024
Detector resolution: 7.4074 pixels mm-1θmax = 79.5°, θmin = 3.3°
ω and phi scansh = 1211
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1615
Tmin = 0.606, Tmax = 0.754l = 2934
21319 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: mixed
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0454P)2 + 1.8191P]
where P = (Fo2 + 2Fc2)/3
7551 reflections(Δ/σ)max = 0.001
549 parametersΔρmax = 0.31 e Å3
17 restraintsΔρmin = 0.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The not metal coordinated amino group of an ethylene diamine ligand was refined as disordered. The C-N bonds were restrained to be similar in length. Amine H atom positions were refined and N-H distances were restrained to 0.88 (2) Angstrom. Equivalent H···H and C···H distances were restrained to be similar to each other. Subject to these conditions the occupancy ratio refined to 0.882 (12) to 0.118 (12).

A partially occupied methanol molecule is located nearby the major disordered amino group and H-bonded to it. The hydroxyl H atom was restrained to hydrogen bond to a porphyrin N atom of a neighboring complex. Subject to these conditions the occupancy rate refined to 0.136 (4).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.70722 (2)0.44915 (2)0.36168 (2)0.01832 (7)
O10.62030 (12)0.47166 (9)0.54271 (4)0.0308 (2)
H10.6482 (10)0.4528 (15)0.5775 (9)0.046*
O20.56022 (12)0.65470 (9)0.51056 (4)0.0328 (3)
H2A0.4922 (17)0.6092 (15)0.4949 (8)0.049*
N10.73694 (12)0.51455 (9)0.43385 (4)0.0204 (2)
N20.68821 (12)0.58909 (9)0.33244 (4)0.0202 (2)
N30.73798 (12)0.39779 (9)0.29110 (4)0.0192 (2)
N40.80823 (12)0.32619 (9)0.39012 (4)0.0201 (2)
C10.76495 (14)0.46245 (11)0.47647 (5)0.0211 (3)
C20.72768 (15)0.51995 (12)0.52170 (5)0.0247 (3)
H20.8058410.5258740.5468860.030*
C30.68812 (16)0.62230 (12)0.49999 (5)0.0256 (3)
H30.7552570.6719940.5132740.031*
C40.70045 (14)0.60845 (11)0.44448 (5)0.0217 (3)
C50.67805 (14)0.68419 (11)0.41046 (5)0.0221 (3)
C60.67411 (14)0.67471 (11)0.35816 (5)0.0214 (3)
C70.65058 (16)0.75574 (11)0.32390 (6)0.0273 (3)
H70.6386900.8230860.3322890.033*
C80.64860 (16)0.71772 (11)0.27743 (6)0.0274 (3)
H80.6354010.7535630.2471930.033*
C90.67021 (14)0.61307 (11)0.28244 (5)0.0216 (3)
C100.66810 (14)0.54655 (11)0.24303 (5)0.0212 (3)
C110.69457 (14)0.44448 (11)0.24758 (5)0.0207 (3)
C120.68755 (15)0.37502 (12)0.20741 (5)0.0255 (3)
H120.6580480.3880230.1737000.031*
C130.73118 (15)0.28702 (11)0.22677 (5)0.0246 (3)
H130.7377370.2268130.2091160.030*
C140.76550 (14)0.30210 (11)0.27891 (5)0.0200 (3)
C150.82584 (14)0.23173 (11)0.31236 (5)0.0205 (3)
C160.85130 (14)0.24664 (11)0.36358 (5)0.0221 (3)
C170.92352 (17)0.17956 (12)0.39728 (6)0.0295 (3)
H170.9656880.1200980.3886760.035*
C180.92010 (17)0.21707 (13)0.44358 (6)0.0304 (3)
H180.9589590.1885540.4735210.036*
C190.84659 (14)0.30825 (11)0.43899 (5)0.0227 (3)
C200.81842 (14)0.36856 (11)0.47976 (5)0.0222 (3)
C210.66512 (16)0.78725 (11)0.42976 (5)0.0257 (3)
C220.54419 (18)0.83574 (13)0.42621 (7)0.0343 (4)
H220.4664880.8018610.4132630.041*
C230.5353 (2)0.93293 (15)0.44131 (8)0.0464 (5)
H230.4517800.9654180.4386330.056*
C240.6477 (2)0.98287 (14)0.46029 (8)0.0492 (5)
H240.6416271.0498100.4703650.059*
C250.7680 (2)0.93559 (14)0.46454 (8)0.0478 (5)
H250.8451820.9695970.4778940.057*
C260.77712 (19)0.83764 (13)0.44927 (7)0.0370 (4)
H260.8606580.8052110.4522630.044*
C270.63996 (15)0.58672 (11)0.19152 (5)0.0222 (3)
C280.51396 (15)0.62173 (12)0.17514 (6)0.0271 (3)
H280.4452740.6204040.1968690.033*
C290.48819 (17)0.65857 (12)0.12724 (6)0.0303 (3)
H290.4014100.6806220.1162680.036*
C300.58747 (18)0.66344 (12)0.09542 (6)0.0317 (3)
H300.5698380.6899230.0629730.038*
C310.71357 (18)0.62906 (15)0.11152 (6)0.0376 (4)
H310.7825430.6321580.0899550.045*
C320.73909 (16)0.59025 (14)0.15896 (6)0.0323 (4)
H320.8250910.5658190.1693400.039*
C330.86940 (14)0.13604 (11)0.29145 (5)0.0213 (3)
C340.95353 (15)0.13496 (11)0.25326 (5)0.0233 (3)
H340.9826230.1957150.2404080.028*
C350.99553 (16)0.04640 (12)0.23368 (6)0.0274 (3)
H351.0523410.0470910.2075700.033*
C360.95451 (17)0.04261 (12)0.25227 (7)0.0313 (3)
H360.9828210.1031320.2389320.038*
C370.87209 (17)0.04298 (12)0.29037 (7)0.0309 (3)
H370.8444920.1040220.3033710.037*
C380.82924 (16)0.04546 (11)0.30982 (6)0.0263 (3)
H380.7721400.0441890.3358400.032*
C390.85297 (15)0.32409 (12)0.53006 (5)0.0237 (3)
C400.78919 (17)0.23834 (13)0.54385 (6)0.0313 (3)
H400.7200530.2108210.5220500.038*
C410.8254 (2)0.19268 (15)0.58903 (7)0.0394 (4)
H410.7822570.1337030.5977230.047*
C420.92487 (19)0.23337 (16)0.62148 (6)0.0419 (5)
H420.9496220.2024350.6524560.050*
C430.98729 (17)0.31836 (16)0.60868 (6)0.0381 (4)
H431.0544830.3465470.6311090.046*
C440.95294 (15)0.36380 (13)0.56300 (6)0.0291 (3)
H440.9978490.4220120.5543070.035*
N50.50664 (13)0.40837 (10)0.36913 (5)0.0271 (3)
H5A0.480 (2)0.4337 (14)0.3967 (7)0.041*
H5B0.509 (2)0.3447 (11)0.3761 (8)0.041*
C450.40746 (17)0.42549 (15)0.32609 (7)0.0385 (4)
H45A0.3291990.3830470.3295390.046*
H45B0.4463490.4058900.2952540.046*
C460.36344 (16)0.53096 (14)0.32166 (6)0.0326 (4)0.882 (12)
H46A0.4422640.5744110.3225690.039*0.882 (12)
H46B0.3110720.5408120.2893300.039*0.882 (12)
N60.2830 (4)0.5585 (2)0.36180 (8)0.0361 (8)0.882 (12)
H6A0.2073 (19)0.5235 (18)0.3589 (9)0.054*0.882 (12)
H6B0.257 (3)0.6185 (13)0.3606 (9)0.054*0.882 (12)
C46B0.36344 (16)0.53096 (14)0.32166 (6)0.0326 (4)0.118 (12)
H46C0.4289850.5677140.3037540.039*0.118 (12)
H46D0.2779780.5329930.3008000.039*0.118 (12)
N6B0.346 (3)0.5839 (15)0.3685 (6)0.046 (5)0.118 (12)
H6C0.305 (16)0.640 (6)0.3622 (17)0.068*0.118 (12)
H6D0.425 (5)0.604 (12)0.382 (4)0.068*0.118 (12)
O30.0708 (14)0.4152 (11)0.3732 (6)0.070 (4)0.136 (4)
H3O0.0106180.4025580.3719160.084*0.136 (4)
C470.1402 (18)0.3301 (15)0.3759 (7)0.060 (5)0.136 (4)
H47A0.1175470.2910390.3458500.072*0.136 (4)
H47B0.1182470.2924800.4050430.072*0.136 (4)
H47C0.2353660.3448840.3788740.072*0.136 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02239 (11)0.01794 (11)0.01494 (10)0.00134 (6)0.00332 (7)0.00039 (6)
O10.0343 (6)0.0355 (6)0.0240 (6)0.0011 (5)0.0097 (4)0.0021 (5)
O20.0390 (6)0.0310 (6)0.0299 (6)0.0063 (5)0.0107 (5)0.0054 (5)
N10.0240 (6)0.0202 (6)0.0175 (6)0.0000 (4)0.0033 (4)0.0014 (4)
N20.0242 (6)0.0190 (6)0.0179 (6)0.0007 (4)0.0041 (4)0.0005 (4)
N30.0241 (6)0.0187 (6)0.0153 (5)0.0017 (4)0.0038 (4)0.0000 (4)
N40.0235 (6)0.0220 (6)0.0148 (5)0.0035 (4)0.0027 (4)0.0006 (4)
C10.0224 (7)0.0249 (7)0.0161 (6)0.0013 (5)0.0029 (5)0.0024 (5)
C20.0277 (7)0.0281 (8)0.0182 (7)0.0010 (6)0.0019 (5)0.0036 (6)
C30.0332 (8)0.0245 (7)0.0191 (7)0.0008 (6)0.0021 (6)0.0044 (6)
C40.0229 (6)0.0229 (7)0.0196 (7)0.0010 (5)0.0032 (5)0.0048 (5)
C50.0238 (7)0.0202 (7)0.0226 (7)0.0005 (5)0.0040 (5)0.0036 (5)
C60.0230 (7)0.0184 (7)0.0233 (7)0.0002 (5)0.0044 (5)0.0012 (5)
C70.0372 (8)0.0170 (7)0.0282 (8)0.0009 (6)0.0059 (6)0.0012 (6)
C80.0368 (8)0.0211 (7)0.0249 (7)0.0012 (6)0.0055 (6)0.0042 (6)
C90.0251 (7)0.0203 (7)0.0198 (7)0.0012 (5)0.0045 (5)0.0031 (5)
C100.0229 (7)0.0230 (7)0.0182 (7)0.0014 (5)0.0038 (5)0.0024 (5)
C110.0239 (7)0.0220 (7)0.0164 (6)0.0013 (5)0.0027 (5)0.0008 (5)
C120.0329 (8)0.0270 (8)0.0163 (6)0.0017 (6)0.0003 (5)0.0013 (6)
C130.0322 (8)0.0224 (7)0.0190 (7)0.0008 (6)0.0008 (6)0.0042 (5)
C140.0229 (6)0.0203 (7)0.0172 (6)0.0002 (5)0.0044 (5)0.0020 (5)
C150.0223 (6)0.0203 (7)0.0193 (7)0.0012 (5)0.0040 (5)0.0015 (5)
C160.0244 (7)0.0225 (7)0.0198 (7)0.0047 (5)0.0038 (5)0.0003 (5)
C170.0366 (8)0.0292 (8)0.0223 (7)0.0136 (6)0.0008 (6)0.0007 (6)
C180.0377 (8)0.0332 (9)0.0197 (7)0.0148 (7)0.0009 (6)0.0018 (6)
C190.0254 (7)0.0247 (7)0.0179 (7)0.0034 (6)0.0015 (5)0.0000 (5)
C200.0241 (7)0.0262 (7)0.0162 (6)0.0008 (5)0.0021 (5)0.0002 (5)
C210.0355 (8)0.0209 (7)0.0210 (7)0.0014 (6)0.0048 (6)0.0030 (5)
C220.0375 (9)0.0282 (9)0.0377 (9)0.0053 (7)0.0059 (7)0.0034 (7)
C230.0566 (12)0.0319 (10)0.0513 (12)0.0176 (9)0.0074 (9)0.0057 (8)
C240.0779 (15)0.0224 (9)0.0467 (11)0.0083 (9)0.0025 (10)0.0114 (8)
C250.0609 (13)0.0278 (9)0.0529 (12)0.0050 (8)0.0042 (10)0.0136 (8)
C260.0414 (9)0.0290 (9)0.0397 (10)0.0009 (7)0.0015 (7)0.0101 (7)
C270.0290 (7)0.0188 (7)0.0188 (7)0.0006 (5)0.0023 (5)0.0021 (5)
C280.0280 (7)0.0274 (8)0.0261 (7)0.0034 (6)0.0027 (6)0.0002 (6)
C290.0342 (8)0.0270 (8)0.0286 (8)0.0055 (6)0.0041 (6)0.0016 (6)
C300.0430 (9)0.0290 (8)0.0219 (7)0.0030 (7)0.0037 (6)0.0071 (6)
C310.0352 (9)0.0543 (11)0.0239 (8)0.0044 (8)0.0059 (6)0.0111 (7)
C320.0269 (8)0.0463 (10)0.0240 (8)0.0030 (7)0.0039 (6)0.0084 (7)
C330.0238 (7)0.0219 (7)0.0179 (6)0.0036 (5)0.0002 (5)0.0017 (5)
C340.0266 (7)0.0226 (7)0.0207 (7)0.0018 (5)0.0032 (5)0.0014 (5)
C350.0271 (7)0.0319 (8)0.0236 (7)0.0058 (6)0.0044 (6)0.0044 (6)
C360.0329 (8)0.0237 (8)0.0369 (9)0.0081 (6)0.0015 (7)0.0072 (6)
C370.0329 (8)0.0208 (8)0.0390 (9)0.0026 (6)0.0036 (7)0.0029 (6)
C380.0275 (7)0.0250 (8)0.0270 (8)0.0037 (6)0.0058 (6)0.0022 (6)
C390.0260 (7)0.0289 (8)0.0164 (6)0.0067 (6)0.0038 (5)0.0004 (6)
C400.0390 (9)0.0319 (9)0.0230 (7)0.0024 (7)0.0037 (6)0.0014 (6)
C410.0496 (10)0.0411 (10)0.0290 (8)0.0103 (8)0.0120 (7)0.0109 (7)
C420.0438 (10)0.0636 (13)0.0191 (8)0.0266 (9)0.0067 (7)0.0104 (8)
C430.0298 (8)0.0623 (12)0.0212 (8)0.0162 (8)0.0031 (6)0.0050 (8)
C440.0247 (7)0.0396 (9)0.0232 (7)0.0067 (6)0.0024 (6)0.0034 (6)
N50.0246 (6)0.0233 (7)0.0341 (7)0.0007 (5)0.0062 (5)0.0004 (5)
C450.0281 (8)0.0444 (10)0.0419 (10)0.0002 (7)0.0037 (7)0.0157 (8)
C460.0270 (8)0.0478 (10)0.0229 (8)0.0033 (7)0.0011 (6)0.0014 (7)
N60.0404 (17)0.0460 (14)0.0224 (9)0.0156 (12)0.0061 (10)0.0046 (8)
C46B0.0270 (8)0.0478 (10)0.0229 (8)0.0033 (7)0.0011 (6)0.0014 (7)
N6B0.035 (12)0.049 (10)0.052 (10)0.002 (8)0.002 (8)0.006 (7)
O30.064 (8)0.067 (9)0.078 (10)0.017 (7)0.003 (7)0.016 (7)
C470.054 (10)0.072 (12)0.056 (10)0.017 (9)0.011 (8)0.011 (9)
Geometric parameters (Å, º) top
Zn1—N22.0556 (12)C25—H250.9500
Zn1—N42.0660 (12)C26—H260.9500
Zn1—N32.0812 (11)C27—C321.394 (2)
Zn1—N52.1315 (13)C27—C281.395 (2)
Zn1—N12.1399 (12)C28—C291.391 (2)
O1—C21.4294 (19)C28—H280.9500
O1—H10.99 (2)C29—C301.382 (3)
O2—C31.4204 (19)C29—H290.9500
O2—H2A0.99 (3)C30—C311.392 (3)
N1—C11.3593 (19)C30—H300.9500
N1—C41.3618 (19)C31—C321.389 (2)
N2—C61.3661 (18)C31—H310.9500
N2—C91.3865 (18)C32—H320.9500
N3—C141.3716 (18)C33—C341.397 (2)
N3—C111.3731 (18)C33—C381.397 (2)
N4—C191.3654 (18)C34—C351.393 (2)
N4—C161.3863 (18)C34—H340.9500
C1—C201.382 (2)C35—C361.384 (2)
C1—C21.5257 (19)C35—H350.9500
C2—C31.544 (2)C36—C371.383 (3)
C2—H21.0000C36—H360.9500
C3—C41.5292 (19)C37—C381.393 (2)
C3—H31.0000C37—H370.9500
C4—C51.383 (2)C38—H380.9500
C5—C61.417 (2)C39—C441.395 (2)
C5—C211.500 (2)C39—C401.395 (2)
C6—C71.442 (2)C40—C411.389 (2)
C7—C81.356 (2)C40—H400.9500
C7—H70.9500C41—C421.389 (3)
C8—C91.438 (2)C41—H410.9500
C8—H80.9500C42—C431.372 (3)
C9—C101.394 (2)C42—H420.9500
C10—C111.411 (2)C43—C441.396 (2)
C10—C271.4990 (19)C43—H430.9500
C11—C121.434 (2)C44—H440.9500
C12—C131.359 (2)N5—C451.486 (2)
C12—H120.9500N5—H5A0.884 (15)
C13—C141.4364 (19)N5—H5B0.882 (15)
C13—H130.9500C45—C46B1.498 (3)
C14—C151.414 (2)C45—C461.498 (3)
C15—C161.401 (2)C45—H45A0.9900
C15—C331.4960 (19)C45—H45B0.9900
C16—C171.439 (2)C46—N61.463 (2)
C17—C181.354 (2)C46—H46A0.9900
C17—H170.9500C46—H46B0.9900
C18—C191.441 (2)N6—H6A0.898 (16)
C18—H180.9500N6—H6B0.853 (16)
C19—C201.421 (2)C46B—N6B1.479 (14)
C20—C391.5001 (19)C46B—H46C0.9900
C21—C221.385 (2)C46B—H46D0.9900
C21—C261.387 (2)N6B—H6C0.88 (2)
C22—C231.383 (3)N6B—H6D0.89 (2)
C22—H220.9500O3—C471.35 (2)
C23—C241.382 (3)O3—H3O0.8400
C23—H230.9500C47—H47A0.9800
C24—C251.372 (3)C47—H47B0.9800
C24—H240.9500C47—H47C0.9800
C25—C261.394 (3)
N2—Zn1—N4155.81 (5)C25—C24—H24120.1
N2—Zn1—N388.38 (5)C23—C24—H24120.1
N4—Zn1—N387.85 (5)C24—C25—C26120.1 (2)
N2—Zn1—N5102.59 (5)C24—C25—H25120.0
N4—Zn1—N5101.54 (5)C26—C25—H25120.0
N3—Zn1—N5102.84 (5)C21—C26—C25120.47 (18)
N2—Zn1—N188.29 (5)C21—C26—H26119.8
N4—Zn1—N188.25 (5)C25—C26—H26119.8
N3—Zn1—N1162.66 (5)C32—C27—C28118.52 (14)
N5—Zn1—N194.49 (5)C32—C27—C10120.79 (13)
C2—O1—H1109.5C28—C27—C10120.69 (13)
C3—O2—H2A109.5C29—C28—C27120.48 (15)
C1—N1—C4110.22 (12)C29—C28—H28119.8
C1—N1—Zn1124.07 (10)C27—C28—H28119.8
C4—N1—Zn1124.07 (9)C30—C29—C28120.72 (15)
C6—N2—C9106.70 (12)C30—C29—H29119.6
C6—N2—Zn1126.63 (10)C28—C29—H29119.6
C9—N2—Zn1126.20 (10)C29—C30—C31119.17 (15)
C14—N3—C11106.58 (11)C29—C30—H30120.4
C14—N3—Zn1125.90 (9)C31—C30—H30120.4
C11—N3—Zn1124.72 (9)C32—C31—C30120.32 (16)
C19—N4—C16106.72 (12)C32—C31—H31119.8
C19—N4—Zn1126.30 (10)C30—C31—H31119.8
C16—N4—Zn1126.97 (9)C31—C32—C27120.76 (15)
N1—C1—C20125.66 (13)C31—C32—H32119.6
N1—C1—C2111.54 (12)C27—C32—H32119.6
C20—C1—C2122.79 (13)C34—C33—C38118.04 (13)
O1—C2—C1109.69 (12)C34—C33—C15120.58 (13)
O1—C2—C3112.41 (12)C38—C33—C15121.37 (13)
C1—C2—C3103.15 (12)C35—C34—C33121.16 (14)
O1—C2—H2110.5C35—C34—H34119.4
C1—C2—H2110.5C33—C34—H34119.4
C3—C2—H2110.5C36—C35—C34119.99 (15)
O2—C3—C4113.06 (12)C36—C35—H35120.0
O2—C3—C2114.25 (13)C34—C35—H35120.0
C4—C3—C2102.83 (12)C37—C36—C35119.65 (14)
O2—C3—H3108.8C37—C36—H36120.2
C4—C3—H3108.8C35—C36—H36120.2
C2—C3—H3108.8C36—C37—C38120.50 (15)
N1—C4—C5125.69 (13)C36—C37—H37119.7
N1—C4—C3111.67 (12)C38—C37—H37119.7
C5—C4—C3122.63 (13)C37—C38—C33120.65 (15)
C4—C5—C6125.81 (13)C37—C38—H38119.7
C4—C5—C21118.21 (13)C33—C38—H38119.7
C6—C5—C21115.86 (13)C44—C39—C40118.47 (14)
N2—C6—C5126.18 (13)C44—C39—C20121.42 (14)
N2—C6—C7109.70 (12)C40—C39—C20120.03 (14)
C5—C6—C7124.10 (13)C41—C40—C39120.89 (17)
C8—C7—C6107.13 (13)C41—C40—H40119.6
C8—C7—H7126.4C39—C40—H40119.6
C6—C7—H7126.4C42—C41—C40119.91 (18)
C7—C8—C9107.28 (13)C42—C41—H41120.0
C7—C8—H8126.4C40—C41—H41120.0
C9—C8—H8126.4C43—C42—C41119.83 (16)
N2—C9—C10125.87 (13)C43—C42—H42120.1
N2—C9—C8109.15 (13)C41—C42—H42120.1
C10—C9—C8124.93 (13)C42—C43—C44120.60 (17)
C9—C10—C11125.20 (13)C42—C43—H43119.7
C9—C10—C27117.69 (13)C44—C43—H43119.7
C11—C10—C27117.08 (13)C39—C44—C43120.28 (17)
N3—C11—C10124.71 (13)C39—C44—H44119.9
N3—C11—C12109.73 (12)C43—C44—H44119.9
C10—C11—C12125.48 (13)C45—N5—Zn1117.93 (11)
C13—C12—C11106.91 (13)C45—N5—H5A111.4 (15)
C13—C12—H12126.5Zn1—N5—H5A110.1 (15)
C11—C12—H12126.5C45—N5—H5B108.8 (14)
C12—C13—C14107.17 (13)Zn1—N5—H5B105.3 (14)
C12—C13—H13126.4H5A—N5—H5B101.8 (18)
C14—C13—H13126.4N5—C45—C46B112.77 (14)
N3—C14—C15124.61 (12)N5—C45—C46112.77 (14)
N3—C14—C13109.49 (12)N5—C45—H45A109.0
C15—C14—C13125.79 (13)C46—C45—H45A109.0
C16—C15—C14124.48 (13)N5—C45—H45B109.0
C16—C15—C33117.67 (13)C46—C45—H45B109.0
C14—C15—C33117.82 (12)H45A—C45—H45B107.8
N4—C16—C15125.85 (13)N6—C46—C45111.44 (17)
N4—C16—C17109.14 (12)N6—C46—H46A109.3
C15—C16—C17124.99 (13)C45—C46—H46A109.3
C18—C17—C16107.17 (13)N6—C46—H46B109.3
C18—C17—H17126.4C45—C46—H46B109.3
C16—C17—H17126.4H46A—C46—H46B108.0
C17—C18—C19107.31 (13)C46—N6—H6A109.2 (15)
C17—C18—H18126.3C46—N6—H6B114.0 (16)
C19—C18—H18126.3H6A—N6—H6B104 (2)
N4—C19—C20126.10 (13)N6B—C46B—C45116.8 (7)
N4—C19—C18109.61 (13)N6B—C46B—H46C108.1
C20—C19—C18124.29 (13)C45—C46B—H46C108.1
C1—C20—C19125.69 (13)N6B—C46B—H46D108.1
C1—C20—C39119.08 (13)C45—C46B—H46D108.1
C19—C20—C39115.23 (13)H46C—C46B—H46D107.3
C22—C21—C26118.74 (15)C46B—N6B—H6C110 (3)
C22—C21—C5121.41 (15)C46B—N6B—H6D109 (3)
C26—C21—C5119.76 (14)H6C—N6B—H6D102 (4)
C23—C22—C21120.74 (18)C47—O3—H3O109.5
C23—C22—H22119.6O3—C47—H47A109.5
C21—C22—H22119.6O3—C47—H47B109.5
C24—C23—C22120.11 (19)H47A—C47—H47B109.5
C24—C23—H23119.9O3—C47—H47C109.5
C22—C23—H23119.9H47A—C47—H47C109.5
C25—C24—C23119.88 (17)H47B—C47—H47C109.5
C4—N1—C1—C20172.69 (14)C14—C15—C16—C17173.90 (15)
Zn1—N1—C1—C2021.5 (2)C33—C15—C16—C174.1 (2)
C4—N1—C1—C28.29 (16)N4—C16—C17—C181.83 (19)
Zn1—N1—C1—C2157.56 (10)C15—C16—C17—C18176.45 (15)
N1—C1—C2—O1113.02 (14)C16—C17—C18—C190.5 (2)
C20—C1—C2—O166.03 (18)C16—N4—C19—C20177.20 (14)
N1—C1—C2—C36.94 (16)Zn1—N4—C19—C203.4 (2)
C20—C1—C2—C3174.00 (14)C16—N4—C19—C182.20 (17)
O1—C2—C3—O27.86 (17)Zn1—N4—C19—C18177.24 (11)
C1—C2—C3—O2125.94 (13)C17—C18—C19—N41.09 (19)
O1—C2—C3—C4115.04 (13)C17—C18—C19—C20178.32 (15)
C1—C2—C3—C43.04 (15)N1—C1—C20—C193.6 (2)
C1—N1—C4—C5173.14 (14)C2—C1—C20—C19175.28 (14)
Zn1—N1—C4—C521.0 (2)N1—C1—C20—C39175.45 (13)
C1—N1—C4—C36.09 (17)C2—C1—C20—C395.6 (2)
Zn1—N1—C4—C3159.75 (10)N4—C19—C20—C110.3 (2)
O2—C3—C4—N1122.20 (14)C18—C19—C20—C1170.36 (15)
C2—C3—C4—N11.50 (16)N4—C19—C20—C39170.55 (14)
O2—C3—C4—C558.54 (19)C18—C19—C20—C398.8 (2)
C2—C3—C4—C5177.76 (13)C4—C5—C21—C22108.81 (18)
N1—C4—C5—C67.8 (2)C6—C5—C21—C2274.97 (19)
C3—C4—C5—C6173.08 (14)C4—C5—C21—C2674.7 (2)
N1—C4—C5—C21168.03 (14)C6—C5—C21—C26101.57 (18)
C3—C4—C5—C2111.1 (2)C26—C21—C22—C230.7 (3)
C9—N2—C6—C5176.68 (14)C5—C21—C22—C23175.87 (17)
Zn1—N2—C6—C54.2 (2)C21—C22—C23—C240.1 (3)
C9—N2—C6—C71.77 (16)C22—C23—C24—C250.6 (3)
Zn1—N2—C6—C7174.29 (10)C23—C24—C25—C260.7 (4)
C4—C5—C6—N21.8 (2)C22—C21—C26—C250.6 (3)
C21—C5—C6—N2177.74 (14)C5—C21—C26—C25176.01 (18)
C4—C5—C6—C7179.92 (15)C24—C25—C26—C210.1 (3)
C21—C5—C6—C74.0 (2)C9—C10—C27—C32110.01 (18)
N2—C6—C7—C80.94 (18)C11—C10—C27—C3268.0 (2)
C5—C6—C7—C8177.54 (15)C9—C10—C27—C2869.78 (19)
C6—C7—C8—C90.26 (18)C11—C10—C27—C28112.19 (17)
C6—N2—C9—C10175.80 (14)C32—C27—C28—C290.5 (2)
Zn1—N2—C9—C103.2 (2)C10—C27—C28—C29179.74 (14)
C6—N2—C9—C81.93 (16)C27—C28—C29—C301.6 (2)
Zn1—N2—C9—C8174.49 (10)C28—C29—C30—C311.3 (3)
C7—C8—C9—N21.36 (18)C29—C30—C31—C320.1 (3)
C7—C8—C9—C10176.39 (15)C30—C31—C32—C271.2 (3)
N2—C9—C10—C115.4 (2)C28—C27—C32—C310.9 (3)
C8—C9—C10—C11177.25 (15)C10—C27—C32—C31178.87 (16)
N2—C9—C10—C27176.78 (13)C16—C15—C33—C34123.99 (15)
C8—C9—C10—C270.6 (2)C14—C15—C33—C3454.12 (19)
C14—N3—C11—C10173.52 (14)C16—C15—C33—C3855.03 (19)
Zn1—N3—C11—C1024.5 (2)C14—C15—C33—C38126.86 (15)
C14—N3—C11—C123.29 (16)C38—C33—C34—C350.5 (2)
Zn1—N3—C11—C12158.64 (10)C15—C33—C34—C35179.57 (14)
C9—C10—C11—N36.2 (2)C33—C34—C35—C360.4 (2)
C27—C10—C11—N3171.62 (13)C34—C35—C36—C370.2 (3)
C9—C10—C11—C12177.44 (15)C35—C36—C37—C380.6 (3)
C27—C10—C11—C124.7 (2)C36—C37—C38—C330.4 (3)
N3—C11—C12—C131.97 (17)C34—C33—C38—C370.1 (2)
C10—C11—C12—C13174.82 (15)C15—C33—C38—C37179.16 (14)
C11—C12—C13—C140.14 (17)C1—C20—C39—C4465.50 (19)
C11—N3—C14—C15173.12 (13)C19—C20—C39—C44113.68 (16)
Zn1—N3—C14—C1525.2 (2)C1—C20—C39—C40117.69 (17)
C11—N3—C14—C133.37 (16)C19—C20—C39—C4063.13 (19)
Zn1—N3—C14—C13158.29 (10)C44—C39—C40—C410.9 (2)
C12—C13—C14—N32.20 (17)C20—C39—C40—C41176.05 (15)
C12—C13—C14—C15174.24 (14)C39—C40—C41—C421.1 (3)
N3—C14—C15—C167.9 (2)C40—C41—C42—C430.2 (3)
C13—C14—C15—C16176.19 (14)C41—C42—C43—C440.8 (3)
N3—C14—C15—C33170.08 (13)C40—C39—C44—C430.2 (2)
C13—C14—C15—C335.8 (2)C20—C39—C44—C43177.06 (14)
C19—N4—C16—C15175.79 (14)C42—C43—C44—C391.0 (2)
Zn1—N4—C16—C154.8 (2)Zn1—N5—C45—C46B78.92 (16)
C19—N4—C16—C172.47 (17)Zn1—N5—C45—C4678.92 (16)
Zn1—N4—C16—C17176.96 (11)N5—C45—C46—N669.5 (3)
C14—C15—C16—N48.1 (2)N5—C45—C46B—N6B38.3 (15)
C33—C15—C16—N4173.93 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N6i0.991.732.710 (3)168
O1—H1···N6Bi0.991.542.510 (17)165
O2—H2A···O1i0.991.822.8056 (18)171
C2—H2···O3i1.002.533.460 (14)155
N5—H5A···O1i0.88 (2)2.38 (2)3.2442 (18)166 (2)
C46—H46A···N20.992.493.368 (2)148
N6—H6A···O30.90 (2)2.08 (2)2.932 (14)159 (3)
C46B—H46C···N20.992.683.368 (2)126
O3—H3O···N4ii0.842.202.992 (14)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
 

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CHE-1625543 to M. Zeller; grant No. CHE-1800361 to C. Brückner).

References

First citationBanerjee, S., Zeller, M. & Brückner, C. (2012). J. Porphyrins Phthalocyanines, 16, 576–588.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrückner, C. (2016). Acc. Chem. Res. 49, 1080–1092.  Web of Science PubMed Google Scholar
First citationBrückner, C., Atoyebi, A. O., Girouard, D., Lau, K. S. F., Akhigbe, J., Samankumara, L., Damunupola, D., Khalil, G. E., Gouterman, M., Krause, J. A. & Zeller, M. (2020). Eur. J. Org. Chem. pp. 475–482.  Google Scholar
First citationBrückner, C. & Dolphin, D. (1995a). Tetrahedron Lett. 36, 3295–3298.  Google Scholar
First citationBrückner, C. & Dolphin, D. (1995b). Tetrahedron Lett. 36, 9425–9428.  Google Scholar
First citationBrückner, C., Rettig, S. J. & Dolphin, D. (1998). J. Org. Chem. 63, 2094–2098.  Google Scholar
First citationBruhn, T. & Brückner, C. (2015). J. Org. Chem. 80, 4861–4868.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2019). APEX3 and SAINT. Bruker Nano Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2021). APEX4. Bruker Nano Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuchler, J. W. (1978). The Porphyrins, edited by D. Dolphin, pp. 389–483, New York: Academic Press.  Google Scholar
First citationDaniell, H. W., Williams, S. C., Jenkins, H. A. & Brückner, C. (2003). Tetrahedron Lett. 44, 4045–4049.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlitsch, W. (1988). Adv. Heterocycl. Chem. 43, 73–126.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHewage, N., Daddario, P., Lau, K. S. F., Guberman-Pfeffer, M. J., Gascón, J. A., Zeller, M., Lee, C. O., Khalil, G. E., Gouterman, M. & Brückner, C. (2019). J. Org. Chem. 84, 239–256.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHyland, M. A., Morton, M. D. & Brückner, C. (2012). J. Org. Chem. 77, 3038–3048.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKingsbury, C. J. & Senge, M. O. (2021). Coord. Chem. Rev. 431, 213760.  Web of Science CrossRef Google Scholar
First citationKratky, C., Waditschatka, R., Angst, C., Johansen, J. E., Plaquevent, J. C., Schreiber, J. & Eschenmoser, A. (1985). Helv. Chim. Acta, 68, 1312–1337.  CrossRef CAS Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLindsey, J. S. (2015). Chem. Rev. 115, 6534–6620.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiu, Y., Zhang, S. & Lindsey, J. S. (2018). Nat. Prod. Rep. 35, 879–901.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLuciano, M. P., Atoyebi, A. O., Tardie, W., Zeller, M. & Brückner, C. (2020). J. Org. Chem. 85, 15273–15286.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacalpine, J. K., Boch, R. & Dolphin, D. (2002). J. Porphyrins Phthalocyanines, 06, 146–155.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSamankumara, L. P., Zeller, M., Krause, J. A. & Brückner, C. (2010). Org. Biomol. Chem. 8, 1951–1965.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSenge, M. O. (2000). The Porphyrin Handbook, edited by K. M. Kadish, K. M. Smith & R. Guilard, pp. 1–218. San Diego: Academic Press.  Google Scholar
First citationSenge, M. O., Kalisch, W. W. & Bischoff, I. (2000). Chem. Eur. J. 6, 2721–2738.  CrossRef PubMed CAS Google Scholar
First citationSharma, M., Ticho, A. L., Samankumara, L., Zeller, M. & Brückner, C. (2017). Inorg. Chem. 56, 11490–11502.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShelnutt, J. A., Song, X.-Z., Ma, J.-G., Jentzen, W. & Medforth, C. J. (1998). Chem. Soc. Rev. 27, 31–41.  CAS Google Scholar
First citationSluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.  CrossRef Web of Science IUCr Journals Google Scholar
First citationSpaulding, L. D., Andrews, L. C. & Williams, G. J. B. (1977). J. Am. Chem. Soc. 99, 6918–6923.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStarnes, S. D., Rudkevich, D. M. & Rebek, J. Jr (2000). Org. Lett. 2, 1995–1998.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStarnes, S. D., Rudkevich, D. M. & Rebek, J. Jr (2001). J. Am. Chem. Soc. 123, 4659–4669.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTaniguchi, M. & Lindsey, J. S. (2017). Chem. Rev. 117, 344–535.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWorlinsky, J. L., Zarate, G., Zeller, M., Ghandehari, M., Khalil, G. & Brückner, C. (2013). J. Porphyrins Phthalocyanines, 17, 836–849.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, Z.-Y., Xue, H., Wang, T., Guo, Y., Meng, Y.-S., Li, X., Zheng, J., Brückner, C., Rao, G., Britt, R. D. & Zhang, J.-L. (2020). ACS Catal. 10, 2177–2188.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds