Download citation
Download citation
link to html
Computational calculations of an anthracene-based Diels–Alder adduct, namely, 17-ethyl-1-hy­droxy­methyl-17-aza­penta­cyclo­[6.6.5.02,7.09,14.015,19]nona­deca-2,4,6,9,11,13-hexa­ene-16,18-dione, C21H19NO3, predicting density functional theory (DFT) optimized geometries in the gas phase are compared in terms of accuracy relative to the solid-state crystal structure and computational cost. Crystal structure determination and Hirshfeld surface analysis of the racemic product reveal that the mol­ecules are linked by O—H...O=C hydro­gen bonds between the hy­droxy and carbonyl groups, accounting for 9.5% of the inter­molecular contacts, while H...H contacts represent 56.9% of the total. Boltzmann popu­lation analysis of computed relative rotamer abundances in the gas phase are based on lower-level geometry optimization and thermochemical corrections coupled with higher-level electronic energy calculations using the B2PLYP double-hybrid functional. As expected, the choice of density functional has a greater effect than the basis set on accuracy for all levels of theory. For any given functional, increasing the basis set size did not always correlate with increasingly accurate structures. The hybrid functional B3LYP without dispersion correction routinely gave the closest approximations to the crystal structure where the B3LYP/aug-cc-pVDZ combination afforded the best structure (r.m.s. deviation = 0.1314 Å). However, the B3LYP/6-31+G(d,p) level of theory represents the best compromise between accuracy (r.m.s. deviation = 0.1388 Å) and cost as it yielded appreciably accurate results in a fraction of the time compared to other method combinations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229620008128/qf3039sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620008128/qf3039Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229620008128/qf3039sup3.pdf
Experimental spectroscopic determinations, X-Ray diffraction data, and computational results

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229620008128/qf3039Isup4.cml
Supplementary material

CCDC reference: 1583410

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL2014 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL2014 (Sheldrick, 2008).

17-Ethyl-1-hydroxymethyl-17-azapentacyclo[6.6.5.02,7.09,14.015,19]nonadeca-2,4,6,9,11,13-hexaene-16,18-dione top
Crystal data top
C21H19NO3F(000) = 704
Mr = 333.37Dx = 1.337 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.2110 (13) ÅCell parameters from 9901 reflections
b = 8.1447 (9) Åθ = 2.8–31.5°
c = 17.6634 (19) ŵ = 0.09 mm1
β = 109.430 (2)°T = 125 K
V = 1656.7 (3) Å3Block, colourless
Z = 40.33 × 0.26 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
5486 independent reflections
Radiation source: fine-focus sealed tube4784 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8.3333 pixels mm-1θmax = 31.5°, θmin = 1.8°
φ and ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1111
Tmin = 0.90, Tmax = 0.98l = 2525
36543 measured reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.4753P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5486 reflectionsΔρmax = 0.50 e Å3
230 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.73973 (6)0.96692 (8)0.50764 (4)0.02254 (15)
O20.85332 (6)0.43164 (8)0.53871 (4)0.01947 (14)
O30.64094 (6)0.20767 (8)0.58591 (4)0.01919 (14)
H30.6757 (11)0.1545 (16)0.5608 (8)0.023*
N10.81304 (6)0.70584 (9)0.51418 (4)0.01427 (14)
C10.68346 (7)0.48699 (9)0.63505 (5)0.01212 (14)
C20.56498 (7)0.52050 (10)0.64336 (5)0.01331 (14)
C30.49221 (7)0.40476 (11)0.66004 (5)0.01628 (16)
H3B0.5150.29280.66810.02*
C40.38528 (8)0.45515 (12)0.66472 (5)0.01995 (17)
H4A0.33540.3770.67640.024*
C50.35126 (8)0.61850 (13)0.65242 (6)0.02073 (18)
H5A0.27770.65080.65470.025*
C60.42446 (7)0.73570 (11)0.63676 (5)0.01791 (16)
H6A0.40140.84750.62880.021*
C70.53159 (7)0.68625 (10)0.63305 (5)0.01386 (15)
C80.62088 (7)0.79749 (10)0.61719 (5)0.01353 (14)
H8A0.59720.91560.6130.016*
C90.73581 (7)0.76794 (10)0.68294 (5)0.01299 (14)
C100.80741 (8)0.88879 (10)0.72961 (5)0.01651 (16)
H10A0.78591.00120.72120.02*
C110.91105 (8)0.84398 (12)0.78889 (5)0.01926 (17)
H11A0.95970.92590.82150.023*
C120.94309 (8)0.67986 (12)0.80034 (5)0.01901 (17)
H12A1.01350.65010.8410.023*
C130.87269 (7)0.55800 (11)0.75254 (5)0.01583 (15)
H13A0.89540.4460.76020.019*
C140.76898 (7)0.60215 (10)0.69361 (5)0.01276 (14)
C150.67343 (7)0.55010 (9)0.54881 (5)0.01195 (14)
H15A0.61580.48160.50730.014*
C160.63540 (7)0.73176 (10)0.53816 (5)0.01289 (14)
H16A0.56060.7430.49270.015*
C170.73168 (7)0.81973 (10)0.51840 (5)0.01469 (15)
C180.78911 (7)0.54773 (10)0.53426 (5)0.01320 (14)
C190.91711 (8)0.74664 (11)0.49436 (6)0.01882 (17)
H19A0.8990.83810.45520.023*
H19B0.93990.65040.46870.023*
C201.01784 (9)0.79573 (14)0.56769 (7)0.0291 (2)
H20A1.08480.82460.55150.044*
H20B1.03840.70380.60560.044*
H20C0.99550.89060.59340.044*
C210.71934 (7)0.30681 (10)0.64652 (5)0.01569 (15)
H21A0.79880.29450.64420.019*
H21B0.72020.26940.70.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0308 (4)0.0125 (3)0.0299 (4)0.0021 (2)0.0174 (3)0.0041 (2)
O20.0193 (3)0.0163 (3)0.0251 (3)0.0056 (2)0.0104 (2)0.0001 (2)
O30.0195 (3)0.0121 (3)0.0267 (3)0.0006 (2)0.0085 (2)0.0046 (2)
N10.0149 (3)0.0134 (3)0.0166 (3)0.0003 (2)0.0081 (2)0.0003 (2)
C10.0122 (3)0.0099 (3)0.0142 (3)0.0011 (2)0.0044 (3)0.0006 (2)
C20.0126 (3)0.0144 (3)0.0132 (3)0.0009 (3)0.0047 (3)0.0006 (3)
C30.0170 (4)0.0173 (4)0.0157 (3)0.0015 (3)0.0069 (3)0.0012 (3)
C40.0175 (4)0.0266 (4)0.0183 (4)0.0036 (3)0.0093 (3)0.0004 (3)
C50.0151 (4)0.0297 (5)0.0197 (4)0.0017 (3)0.0090 (3)0.0020 (3)
C60.0159 (4)0.0211 (4)0.0178 (4)0.0049 (3)0.0070 (3)0.0003 (3)
C70.0140 (3)0.0145 (3)0.0139 (3)0.0018 (3)0.0056 (3)0.0001 (3)
C80.0146 (3)0.0110 (3)0.0161 (3)0.0025 (3)0.0066 (3)0.0003 (3)
C90.0142 (3)0.0121 (3)0.0138 (3)0.0004 (3)0.0063 (3)0.0004 (3)
C100.0202 (4)0.0140 (3)0.0177 (4)0.0029 (3)0.0094 (3)0.0025 (3)
C110.0189 (4)0.0216 (4)0.0179 (4)0.0064 (3)0.0071 (3)0.0041 (3)
C120.0150 (4)0.0246 (4)0.0162 (4)0.0029 (3)0.0036 (3)0.0005 (3)
C130.0144 (3)0.0176 (4)0.0152 (3)0.0008 (3)0.0046 (3)0.0021 (3)
C140.0128 (3)0.0127 (3)0.0134 (3)0.0001 (3)0.0053 (3)0.0002 (3)
C150.0120 (3)0.0105 (3)0.0137 (3)0.0016 (2)0.0046 (3)0.0002 (2)
C160.0136 (3)0.0114 (3)0.0144 (3)0.0025 (3)0.0057 (3)0.0014 (3)
C170.0176 (4)0.0132 (3)0.0145 (3)0.0018 (3)0.0070 (3)0.0009 (3)
C180.0141 (3)0.0128 (3)0.0130 (3)0.0005 (3)0.0049 (3)0.0011 (3)
C190.0187 (4)0.0198 (4)0.0222 (4)0.0020 (3)0.0125 (3)0.0009 (3)
C200.0205 (4)0.0314 (5)0.0344 (5)0.0062 (4)0.0078 (4)0.0059 (4)
C210.0162 (4)0.0106 (3)0.0194 (4)0.0015 (3)0.0049 (3)0.0012 (3)
Geometric parameters (Å, º) top
O1—C171.2229 (10)C8—H8A1.0
O2—C181.2140 (10)C9—C101.3904 (11)
O3—C211.4257 (10)C9—C141.4044 (11)
O3—H30.830 (12)C10—C111.3963 (13)
N1—C171.3792 (10)C10—H10A0.95
N1—C181.3923 (11)C11—C121.3886 (13)
N1—C191.4643 (11)C11—H11A0.95
C1—C141.5237 (11)C12—C131.3979 (12)
C1—C211.5256 (11)C12—H12A0.95
C1—C21.5266 (11)C13—C141.3926 (11)
C1—C151.5734 (11)C13—H13A0.95
C2—C31.3926 (11)C15—C181.5177 (11)
C2—C71.4044 (11)C15—C161.5434 (11)
C3—C41.3971 (12)C15—H15A1.0
C3—H3B0.95C16—C171.5134 (11)
C4—C51.3891 (14)C16—H16A1.0
C4—H4A0.95C19—C201.5135 (14)
C5—C61.3969 (13)C19—H19A0.99
C5—H5A0.95C19—H19B0.99
C6—C71.3910 (11)C20—H20A0.98
C6—H6A0.95C20—H20B0.98
C7—C81.5137 (11)C20—H20C0.98
C8—C91.5139 (11)C21—H21A0.99
C8—C161.5592 (11)C21—H21B0.99
C21—O3—H3111.2 (9)C11—C12—H12A119.7
C17—N1—C18113.10 (7)C13—C12—H12A119.7
C17—N1—C19123.94 (7)C14—C13—C12119.45 (8)
C18—N1—C19122.90 (7)C14—C13—H13A120.3
C14—C1—C21113.59 (7)C12—C13—H13A120.3
C14—C1—C2106.38 (6)C13—C14—C9119.91 (7)
C21—C1—C2113.50 (7)C13—C14—C1126.58 (7)
C14—C1—C15105.74 (6)C9—C14—C1113.50 (7)
C21—C1—C15111.67 (6)C18—C15—C16104.53 (6)
C2—C1—C15105.29 (6)C18—C15—C1112.50 (6)
C3—C2—C7120.00 (7)C16—C15—C1110.76 (6)
C3—C2—C1126.24 (7)C18—C15—H15A109.6
C7—C2—C1113.76 (7)C16—C15—H15A109.6
C2—C3—C4119.23 (8)C1—C15—H15A109.6
C2—C3—H3B120.4C17—C16—C15104.87 (6)
C4—C3—H3B120.4C17—C16—C8111.86 (7)
C5—C4—C3120.58 (8)C15—C16—C8109.83 (6)
C5—C4—H4A119.7C17—C16—H16A110.1
C3—C4—H4A119.7C15—C16—H16A110.1
C4—C5—C6120.51 (8)C8—C16—H16A110.1
C4—C5—H5A119.7O1—C17—N1123.67 (8)
C6—C5—H5A119.7O1—C17—C16127.49 (8)
C7—C6—C5119.03 (8)N1—C17—C16108.84 (7)
C7—C6—H6A120.5O2—C18—N1123.44 (8)
C5—C6—H6A120.5O2—C18—C15128.05 (8)
C6—C7—C2120.61 (8)N1—C18—C15108.50 (6)
C6—C7—C8125.59 (8)N1—C19—C20112.22 (8)
C2—C7—C8113.79 (7)N1—C19—H19A109.2
C7—C8—C9107.68 (7)C20—C19—H19A109.2
C7—C8—C16105.28 (6)N1—C19—H19B109.2
C9—C8—C16106.25 (6)C20—C19—H19B109.2
C7—C8—H8A112.4H19A—C19—H19B107.9
C9—C8—H8A112.4C19—C20—H20A109.5
C16—C8—H8A112.4C19—C20—H20B109.5
C10—C9—C14120.31 (8)H20A—C20—H20B109.5
C10—C9—C8125.58 (7)C19—C20—H20C109.5
C14—C9—C8114.09 (7)H20A—C20—H20C109.5
C9—C10—C11119.60 (8)H20B—C20—H20C109.5
C9—C10—H10A120.2O3—C21—C1110.71 (7)
C11—C10—H10A120.2O3—C21—H21A109.5
C12—C11—C10120.13 (8)C1—C21—H21A109.5
C12—C11—H11A119.9O3—C21—H21B109.5
C10—C11—H11A119.9C1—C21—H21B109.5
C11—C12—C13120.58 (8)H21A—C21—H21B108.1
C14—C1—C2—C3125.36 (8)C21—C1—C14—C9179.99 (7)
C21—C1—C2—C30.28 (12)C2—C1—C14—C954.43 (9)
C15—C1—C2—C3122.71 (8)C15—C1—C14—C957.19 (8)
C14—C1—C2—C754.22 (9)C14—C1—C15—C1859.80 (8)
C21—C1—C2—C7179.86 (7)C21—C1—C15—C1864.22 (8)
C15—C1—C2—C757.71 (8)C2—C1—C15—C18172.18 (6)
C7—C2—C3—C41.27 (12)C14—C1—C15—C1656.78 (8)
C1—C2—C3—C4179.18 (8)C21—C1—C15—C16179.21 (6)
C2—C3—C4—C50.40 (13)C2—C1—C15—C1655.60 (8)
C3—C4—C5—C61.29 (14)C18—C15—C16—C170.01 (8)
C4—C5—C6—C70.48 (13)C1—C15—C16—C17121.39 (7)
C5—C6—C7—C21.20 (13)C18—C15—C16—C8120.36 (7)
C5—C6—C7—C8179.64 (8)C1—C15—C16—C81.04 (9)
C3—C2—C7—C62.09 (12)C7—C8—C16—C17174.10 (6)
C1—C2—C7—C6178.31 (7)C9—C8—C16—C1760.04 (8)
C3—C2—C7—C8178.66 (7)C7—C8—C16—C1558.08 (8)
C1—C2—C7—C80.94 (10)C9—C8—C16—C1555.97 (8)
C6—C7—C8—C9128.23 (8)C18—N1—C17—O1175.69 (8)
C2—C7—C8—C952.57 (9)C19—N1—C17—O11.61 (13)
C6—C7—C8—C16118.72 (9)C18—N1—C17—C164.18 (9)
C2—C7—C8—C1660.49 (8)C19—N1—C17—C16178.52 (7)
C7—C8—C9—C10128.93 (8)C15—C16—C17—O1177.46 (9)
C16—C8—C9—C10118.67 (8)C8—C16—C17—O158.47 (11)
C7—C8—C9—C1452.38 (9)C15—C16—C17—N12.39 (8)
C16—C8—C9—C1460.03 (8)C8—C16—C17—N1121.39 (7)
C14—C9—C10—C111.91 (12)C17—N1—C18—O2175.69 (8)
C8—C9—C10—C11179.47 (8)C19—N1—C18—O21.65 (13)
C9—C10—C11—C120.91 (13)C17—N1—C18—C154.16 (9)
C10—C11—C12—C130.41 (13)C19—N1—C18—C15178.50 (7)
C11—C12—C13—C140.71 (13)C16—C15—C18—O2177.49 (8)
C12—C13—C14—C90.29 (12)C1—C15—C18—O257.24 (11)
C12—C13—C14—C1178.42 (8)C16—C15—C18—N12.35 (8)
C10—C9—C14—C131.61 (12)C1—C15—C18—N1122.60 (7)
C8—C9—C14—C13179.62 (7)C17—N1—C19—C2087.01 (10)
C10—C9—C14—C1177.27 (7)C18—N1—C19—C2090.04 (10)
C8—C9—C14—C11.51 (10)C14—C1—C21—O3175.24 (7)
C21—C1—C14—C131.20 (11)C2—C1—C21—O363.06 (9)
C2—C1—C14—C13126.79 (8)C15—C1—C21—O355.77 (9)
C15—C1—C14—C13121.59 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.83 (1)2.08 (1)2.8846 (10)164 (1)
Symmetry code: (i) x, y1, z.
R.m.s. deviations (Å) of superimposed structures top
Functional
Basis setB3LYPB3LYPD3APFDωB97XD
6-31+G(d,p)0.13880.14410.17570.1542
6-311+G(2d,p)0.13420.14000.13420.1550
6-311++G(3df,pd)0.13450.14150.17710.1559
aug-cc-pVDZ0.13140.14440.18020.1596
Calculated single point energies and thermochemical corrections of the six possible rotamers in the gas phase in Hartrees top
RotamerB2PLYPB3LYPεZPEEtotHcorrGcorrB3LYP+GcorrB2PLYP+Gcorr
1a-1091.538475-1092.2146200.3584770.3783760.3793200.310435-1091.904185-1091.228040
1b-1091.535152-1092.2105310.3580470.3780550.3789990.310221-1091.900310-1091.224931
1c-1091.538449-1092.2152650.3589130.3784600.3794040.311802-1091.903463-1091.226647
1d-1091.537743-1092.2146290.3584410.3783560.3793010.310398-1091.904231-1091.227345
1e-1091.534218-1092.2105170.3579230.3779600.3789040.310029-1091.900488-1091.224189
1f-1091.537691-1092.2153050.3587380.3783280.3792730.311384-1091.903921-1091.226307
Boltzmann population analysis results of the six rotamers at standard conditions and using the B2PLYPD3/6-311++G(2d,2p)//B3LYP/6-31+G(d,p) level of theory top
RotamerGibbs free energy (Hartree)Relative Gibbs free energy (kcal mol-1)qiFraction (qi/q)
1a-1091.2280400.0000001.0000000.518519
1b-1091.2249311.9509260.0379100.019657
1c-1091.2266470.8741200.2307850.119666
1d-1091.2273450.4261190.4811600.249491
1e-1091.2241892.4165370.0173610.009002
1f-1091.2263071.0874730.1613540.083665
q = 1.92857q = 1
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds