Download citation
Download citation
link to html
Single crystals of (E)-N′-(4-iso­propyl­benzyl­idene)isonicotinohydrazide monohydrate (IBIHM) were grown from ethanol by the slow evaporation from solution growth technique at room temperature. The structure was elucidated by single-crystal X-ray diffraction analysis and crystallized in the orthorhombic system with noncentrosymmetric space group P212121. Optical studies reveal that the absorption was minimum in the visible region and the band-gap energy was estimated using the Kubelka–Munk algorithm. The functional groups were identified by Fourier transform infrared spectral analysis. A scanning electron microscopy study revealed the surface morphology of the grown crystal. Investigation of the intermolecular interactions, crystal packing using Hirshfeld surface analysis and single-crystal X-ray diffraction confirm that the close contacts were associated with molecular interactions. Fingerprint plots of Hirshfeld surfaces are used to locate and analyze the percentage of hydrogen-bonding interactions. The second-harmonic generation efficiency of the grown specimen was superior to that of the reference material, potassium di­hydrogen phosphate. The grown crystals were further characterized by mass spectrometry and elemental analysis. Theoretical studies using density functional theory (DFT) greatly substantiated the experimental observations. Large first-order molecular hyperpolarizability (β) of about ∼70× was observed for IBIHM. The efficiency of IBIHM in terms of nonlinear optical response was verified and the molecule displayed greater chemical stability and reactivity.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520621001517/rm5039sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520621001517/rm5039Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520621001517/rm5039sup3.pdf
Supplementary material

CCDC reference: 1404102

Computing details top

Data collection: Bruker APEX2; cell refinement: Bruker SAINT; data reduction: Bruker SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2014); molecular graphics: Bruker SHELXTL; software used to prepare material for publication: Bruker SHELXTL.

(I) top
Crystal data top
C16H19N3O2Dx = 1.200 Mg m3
Mr = 285.34Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2737 reflections
a = 7.7498 (4) Åθ = 2.6–24.4°
b = 11.7940 (6) ŵ = 0.08 mm1
c = 17.2849 (7) ÅT = 296 K
V = 1579.86 (13) Å3Block, white
Z = 40.25 × 0.16 × 0.10 mm
F(000) = 608
Data collection top
Bruker APEX-II CCD
diffractometer
2209 reflections with I > 2σ(I)
φ and ω scansRint = 0.019
Absorption correction: multi-scan
SADABS V2014/5(Bruker AXS.Inc)
θmax = 25.0°, θmin = 2.1°
Tmin = 0.980, Tmax = 0.992h = 79
6423 measured reflectionsk = 1014
2697 independent reflectionsl = 2016
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0534P)2 + 0.3884P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.045(Δ/σ)max < 0.001
wR(F2) = 0.122Δρmax = 0.27 e Å3
S = 1.05Δρmin = 0.24 e Å3
2697 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
201 parametersExtinction coefficient: 0.011 (2)
0 restraintsAbsolute structure: Flack x determined using 756 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
Hydrogen site location: mixedAbsolute structure parameter: 0.7 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.0128 (4)0.8828 (2)0.77823 (14)0.0540 (7)
H2N0.01680.81520.79150.065*
N30.0065 (4)0.9156 (2)0.70119 (14)0.0538 (7)
C80.0855 (4)0.8631 (3)0.57379 (17)0.0472 (7)
O10.1047 (4)1.05598 (19)0.81812 (14)0.0716 (8)
O20.1348 (5)0.6789 (2)0.81825 (18)0.0781 (9)
C70.0697 (4)0.8461 (3)0.65694 (18)0.0532 (8)
H70.11770.78110.67860.064*
C50.0716 (4)0.9129 (3)0.91286 (18)0.0496 (8)
C60.0655 (5)0.9575 (3)0.83189 (18)0.0519 (8)
C90.1684 (5)0.7823 (3)0.52965 (19)0.0577 (9)
H90.21950.72040.55380.069*
C110.1041 (5)0.8820 (3)0.4117 (2)0.0641 (10)
C40.1388 (5)0.8078 (3)0.9307 (2)0.0624 (9)
H40.17320.75810.89190.075*
C120.0217 (5)0.9635 (3)0.45628 (19)0.0656 (10)
H120.02841.02560.43180.079*
C130.0119 (5)0.9553 (3)0.53535 (19)0.0567 (9)
H130.04411.01150.56350.068*
N10.1040 (5)0.8437 (3)1.06585 (18)0.0794 (10)
C10.0209 (5)0.9822 (3)0.97240 (19)0.0627 (9)
H10.02391.05390.96240.075*
C100.1768 (5)0.7919 (3)0.4502 (2)0.0661 (10)
H100.23310.73600.42190.079*
C30.1537 (6)0.7782 (3)1.0075 (2)0.0750 (12)
H30.20150.70801.01930.090*
C20.0374 (6)0.9437 (4)1.0470 (2)0.0789 (13)
H20.00050.99061.08680.095*
C140.1162 (10)0.8893 (4)0.3233 (2)0.125 (2)
H140.24140.88430.31620.150*
C160.0825 (9)1.0003 (5)0.2899 (3)0.118 (2)
H16A0.11621.00030.23640.177*
H16B0.14741.05680.31730.177*
H16C0.03841.01710.29370.177*
C150.0621 (10)0.7886 (6)0.2844 (3)0.145 (3)
H15A0.06170.78590.28300.217*
H15B0.10520.72350.31160.217*
H15C0.10640.78880.23260.217*
H1O0.129 (7)0.619 (4)0.782 (3)0.118 (17)*
H2O0.210 (8)0.671 (5)0.846 (3)0.13 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0701 (18)0.0497 (15)0.0422 (15)0.0056 (14)0.0000 (13)0.0082 (12)
N30.0666 (18)0.0531 (15)0.0419 (14)0.0004 (15)0.0032 (13)0.0075 (12)
C80.0475 (16)0.0480 (16)0.0462 (17)0.0003 (15)0.0047 (14)0.0008 (14)
O10.104 (2)0.0555 (14)0.0558 (14)0.0210 (14)0.0090 (14)0.0101 (12)
O20.119 (3)0.0545 (16)0.0606 (16)0.0187 (16)0.0293 (18)0.0116 (13)
C70.0613 (19)0.0478 (16)0.0504 (18)0.0001 (17)0.0045 (17)0.0054 (15)
C50.0540 (18)0.0504 (17)0.0445 (17)0.0019 (15)0.0067 (15)0.0037 (14)
C60.0565 (19)0.0508 (18)0.0483 (18)0.0012 (16)0.0001 (16)0.0037 (15)
C90.062 (2)0.0532 (19)0.058 (2)0.0114 (18)0.0007 (17)0.0012 (16)
C110.080 (3)0.067 (2)0.0449 (18)0.001 (2)0.0039 (18)0.0010 (17)
C40.076 (2)0.058 (2)0.0528 (19)0.0065 (19)0.0104 (18)0.0006 (17)
C120.083 (3)0.063 (2)0.051 (2)0.013 (2)0.0023 (19)0.0088 (17)
C130.068 (2)0.0521 (18)0.0502 (18)0.0107 (17)0.0014 (17)0.0020 (15)
N10.107 (3)0.083 (2)0.0480 (17)0.002 (2)0.0125 (18)0.0090 (17)
C10.075 (2)0.061 (2)0.0523 (19)0.0054 (19)0.0034 (18)0.0004 (17)
C100.073 (3)0.065 (2)0.061 (2)0.009 (2)0.0117 (19)0.0071 (19)
C30.098 (3)0.065 (2)0.062 (2)0.004 (2)0.021 (2)0.010 (2)
C20.102 (3)0.084 (3)0.051 (2)0.004 (3)0.002 (2)0.006 (2)
C140.221 (7)0.104 (4)0.051 (2)0.013 (4)0.006 (4)0.002 (3)
C160.144 (5)0.149 (5)0.061 (3)0.025 (4)0.001 (3)0.036 (3)
C150.203 (7)0.173 (6)0.058 (3)0.008 (6)0.027 (4)0.020 (4)
Geometric parameters (Å, º) top
N2—C61.343 (4)C4—H40.9300
N2—N31.388 (3)C12—C131.372 (4)
N2—H2N0.8600C12—H120.9300
N3—C71.267 (4)C13—H130.9300
C8—C91.379 (4)N1—C31.327 (5)
C8—C131.396 (4)N1—C21.328 (5)
C8—C71.456 (4)C1—C21.373 (5)
O1—C61.223 (4)C1—H10.9300
O2—H1O0.94 (5)C10—H100.9300
O2—H2O0.76 (6)C3—H30.9300
C7—H70.9300C2—H20.9300
C5—C11.372 (5)C14—C151.428 (7)
C5—C41.379 (5)C14—C161.455 (7)
C5—C61.496 (4)C14—H140.9800
C9—C101.380 (4)C16—H16A0.9600
C9—H90.9300C16—H16B0.9600
C11—C101.374 (5)C16—H16C0.9600
C11—C121.388 (5)C15—H15A0.9600
C11—C141.533 (5)C15—H15B0.9600
C4—C31.378 (5)C15—H15C0.9600
C6—N2—N3119.3 (3)C3—N1—C2116.3 (3)
C6—N2—H2N120.3C5—C1—C2118.7 (3)
N3—N2—H2N120.3C5—C1—H1120.6
C7—N3—N2114.5 (3)C2—C1—H1120.6
C9—C8—C13117.7 (3)C11—C10—C9121.7 (3)
C9—C8—C7119.3 (3)C11—C10—H10119.1
C13—C8—C7122.9 (3)C9—C10—H10119.1
H1O—O2—H2O111 (5)N1—C3—C4124.1 (4)
N3—C7—C8123.1 (3)N1—C3—H3118.0
N3—C7—H7118.5C4—C3—H3118.0
C8—C7—H7118.5N1—C2—C1124.0 (4)
C1—C5—C4118.4 (3)N1—C2—H2118.0
C1—C5—C6118.9 (3)C1—C2—H2118.0
C4—C5—C6122.5 (3)C15—C14—C16120.6 (5)
O1—C6—N2124.3 (3)C15—C14—C11113.9 (4)
O1—C6—C5120.6 (3)C16—C14—C11115.9 (4)
N2—C6—C5115.1 (3)C15—C14—H14100.5
C8—C9—C10121.1 (3)C16—C14—H14100.5
C8—C9—H9119.5C11—C14—H14100.5
C10—C9—H9119.5C14—C16—H16A109.5
C10—C11—C12117.1 (3)C14—C16—H16B109.5
C10—C11—C14120.1 (4)H16A—C16—H16B109.5
C12—C11—C14122.8 (4)C14—C16—H16C109.5
C3—C4—C5118.3 (3)H16A—C16—H16C109.5
C3—C4—H4120.8H16B—C16—H16C109.5
C5—C4—H4120.8C14—C15—H15A109.5
C13—C12—C11122.0 (3)C14—C15—H15B109.5
C13—C12—H12119.0H15A—C15—H15B109.5
C11—C12—H12119.0C14—C15—H15C109.5
C12—C13—C8120.4 (3)H15A—C15—H15C109.5
C12—C13—H13119.8H15B—C15—H15C109.5
C8—C13—H13119.8
C6—N2—N3—C7169.5 (3)C11—C12—C13—C80.1 (6)
N2—N3—C7—C8178.1 (3)C9—C8—C13—C120.5 (5)
C9—C8—C7—N3179.1 (3)C7—C8—C13—C12175.9 (3)
C13—C8—C7—N32.7 (5)C4—C5—C1—C20.7 (5)
N3—N2—C6—O12.3 (5)C6—C5—C1—C2175.7 (4)
N3—N2—C6—C5178.6 (3)C12—C11—C10—C90.1 (6)
C1—C5—C6—O138.0 (5)C14—C11—C10—C9179.9 (5)
C4—C5—C6—O1136.8 (4)C8—C9—C10—C110.3 (6)
C1—C5—C6—N2141.1 (3)C2—N1—C3—C40.4 (7)
C4—C5—C6—N244.1 (5)C5—C4—C3—N11.4 (6)
C13—C8—C9—C100.6 (5)C3—N1—C2—C11.2 (7)
C7—C8—C9—C10176.0 (3)C5—C1—C2—N11.8 (6)
C1—C5—C4—C30.8 (5)C10—C11—C14—C1551.1 (8)
C6—C5—C4—C3174.0 (4)C12—C11—C14—C15129.0 (6)
C10—C11—C12—C130.2 (6)C10—C11—C14—C16162.6 (5)
C14—C11—C12—C13179.9 (5)C12—C11—C14—C1617.3 (8)
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds