Download citation
Download citation
link to html
A single-crystal to single-crystal transition in DL-alaninium semi-oxalate monohydrate at a pressure between 1.5 and 2.4 GPa was studied by single-crystal X-ray diffraction and Raman spectroscopy. This is the first example of a single-crystal diffraction study of a high-pressure phase transition in a crystalline amino acid salt hydrate. Selected hydrogen bonds switch over and become bifurcated, whereas the others are compressed continuously. The transition is accompanied by pronounced discontinuities in the cell parameters and volume versus pressure, although no radical changes in the molecular packing are induced. Although, in contrast to DL-alanine, in the crystal structure of the salt there are short O—H...O hydrogen bonds, the structure of the salt is more compressible. At the same time, the structure of DL-alanine does not undergo pressure-induced phase transitions, whereas the structure of DL-alaninium semi-oxalate monohydrate does, and at a relatively low pressure. The anisotropy of lattice strain for the low-pressure phase differs from that on cooling at ambient pressure; interestingly, the anisotropy of the pressure-induced compression of the high-pressure phase is quite similar to the lattice strain of the low-pressure phase on cooling.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052519213011676/gp5064sup1.cif
Contains datablocks 030, 050, 110, 150, 240, 310, 360, 430, 540

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052519213011676/gp5064030sup2.hkl
Contains datablock 030

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052519213011676/gp5064050sup3.hkl
Contains datablock 050

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052519213011676/gp5064110sup4.hkl
Contains datablock 110

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052519213011676/gp5064150sup5.hkl
Contains datablock 150

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052519213011676/gp5064240sup6.hkl
Contains datablock 240

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052519213011676/gp5064310sup7.hkl
Contains datablock 310

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052519213011676/gp5064360sup8.hkl
Contains datablock 360

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052519213011676/gp5064430sup9.hkl
Contains datablock 430

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052519213011676/gp5064540sup10.hkl
Contains datablock 540

CCDC references: 950474; 950475; 950476; 950477; 950478; 950479; 950480; 950481; 950482

Computing details top

For all compounds, data collection: CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.44 (release 25-10-2010 CrysAlis171 .NET) (compiled Oct 25 2010,18:11:34); cell refinement: CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.44 (release 25-10-2010 CrysAlis171 .NET) (compiled Oct 25 2010,18:11:34); data reduction: CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.44 (release 25-10-2010 CrysAlis171 .NET) (compiled Oct 25 2010,18:11:34); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: Mercury (Macrae et al., 2006), PLATON (Spek, 2009), enCIFer (Allen et al., 2004).

(030) DL-alaninium semi-oxalate hydrate top
Crystal data top
C3H8NO2·C2HO4·H2OF(000) = 416
Mr = 197.15Dx = 1.559 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1215 reflections
a = 12.456 (7) Åθ = 2.0–28.0°
b = 6.4891 (4) ŵ = 0.15 mm1
c = 11.338 (3) ÅT = 293 K
β = 113.57 (5)°Prism, colorless
V = 839.9 (5) Å30.15 × 0.14 × 0.05 mm
Z = 4
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
788 independent reflections
Radiation source: Enhance (Mo) X-ray Source508 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
Detector resolution: 10.3457 pixels mm-1θmax = 28.1°, θmin = 3.6°
rotation method scansh = 1010
Absorption correction: gaussian
Absorb Angel (2004) J. Appl. Cryst. 37:486-492
k = 88
Tmin = 0.386, Tmax = 0.487l = 1514
4770 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.036P)2 + 0.3244P]
where P = (Fo2 + 2Fc2)/3
788 reflections(Δ/σ)max < 0.001
126 parametersΔρmax = 0.15 e Å3
132 restraintsΔρmin = 0.16 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.0803 (5)0.2925 (3)0.4425 (3)0.037 (2)
H30.04840.28590.36380.044*
O60.0056 (5)0.2171 (4)0.6957 (3)0.036 (2)
O40.0923 (7)0.1905 (5)0.4374 (4)0.037 (2)
O50.1670 (7)0.2927 (6)0.6969 (5)0.042 (2)
C50.0050 (11)0.2432 (7)0.4919 (7)0.027 (3)
C40.0643 (11)0.2483 (7)0.6434 (7)0.030 (3)
O20.4197 (5)0.4683 (4)0.8615 (3)0.043 (2)
O10.4567 (5)0.7977 (4)0.8318 (3)0.042 (2)
H10.50800.74700.81290.051*
N10.2300 (6)0.5570 (4)0.9062 (4)0.030 (3)
H1A0.27180.51440.98610.045*
H1B0.22210.45410.85150.045*
H1C0.15960.59780.89960.045*
C10.3949 (7)0.6473 (6)0.8559 (5)0.031 (3)
C20.2908 (7)0.7312 (5)0.8753 (5)0.028 (3)
H20.23730.79140.79360.034*
C30.3205 (8)0.8966 (6)0.9781 (5)0.040 (5)
H3A0.37920.84561.05700.061*
H3B0.25140.93240.99130.061*
H3C0.34971.01640.95090.061*
O1W0.6495 (5)0.6278 (4)0.8432 (3)0.037 (2)
H1W10.703 (4)0.698 (5)0.825 (4)0.044*
H2W10.629 (6)0.519 (4)0.793 (3)0.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.036 (7)0.0553 (15)0.021 (2)0.013 (2)0.013 (4)0.0025 (13)
O60.034 (7)0.0544 (15)0.024 (2)0.005 (2)0.016 (4)0.0009 (13)
O40.036 (7)0.048 (2)0.031 (3)0.007 (3)0.017 (4)0.0016 (17)
O50.045 (8)0.056 (2)0.031 (3)0.013 (3)0.021 (4)0.0137 (18)
C50.033 (10)0.022 (2)0.032 (4)0.010 (4)0.021 (5)0.005 (2)
C40.040 (10)0.0221 (19)0.032 (4)0.004 (4)0.020 (5)0.004 (2)
O20.032 (8)0.0401 (15)0.058 (3)0.000 (2)0.019 (4)0.0086 (14)
O10.030 (7)0.0495 (15)0.057 (3)0.002 (2)0.029 (4)0.0063 (14)
N10.019 (10)0.0392 (17)0.030 (3)0.001 (2)0.008 (5)0.0062 (15)
C10.025 (8)0.0400 (19)0.026 (3)0.003 (3)0.009 (5)0.0009 (18)
C20.020 (10)0.0354 (18)0.030 (4)0.001 (3)0.011 (6)0.0007 (18)
C30.029 (15)0.044 (2)0.049 (4)0.004 (3)0.016 (8)0.013 (2)
O1W0.033 (8)0.0396 (14)0.042 (3)0.000 (2)0.019 (4)0.0003 (14)
Geometric parameters (Å, º) top
O3—C51.310 (9)N1—H1B0.8900
O3—H30.8200N1—H1C0.8900
O6—C41.251 (9)C1—C21.500 (9)
O4—C51.170 (14)C2—C31.517 (5)
O5—C41.211 (15)C2—H20.9800
C5—C41.575 (11)C3—H3A0.9600
O2—C11.197 (5)C3—H3B0.9600
O1—C11.338 (6)C3—H3C0.9600
O1—H10.8200O1W—H1W10.90 (2)
N1—C21.478 (6)O1W—H2W10.878 (18)
N1—H1A0.8900
C5—O3—H3109.5O2—C1—C2124.4 (5)
O4—C5—O3127.8 (6)O1—C1—C2111.5 (4)
O4—C5—C4121.2 (7)N1—C2—C1108.1 (3)
O3—C5—C4110.9 (9)N1—C2—C3110.4 (3)
O5—C4—O6126.7 (7)C1—C2—C3114.2 (6)
O5—C4—C5119.5 (7)N1—C2—H2108.0
O6—C4—C5113.7 (10)C1—C2—H2108.0
C1—O1—H1109.5C3—C2—H2108.0
C2—N1—H1A109.5C2—C3—H3A109.5
C2—N1—H1B109.5C2—C3—H3B109.5
H1A—N1—H1B109.5H3A—C3—H3B109.5
C2—N1—H1C109.5C2—C3—H3C109.5
H1A—N1—H1C109.5H3A—C3—H3C109.5
H1B—N1—H1C109.5H3B—C3—H3C109.5
O2—C1—O1124.1 (6)H1W1—O1W—H2W1108 (4)
O4—C5—C4—O5176.0 (8)O2—C1—C2—N12.0 (8)
O3—C5—C4—O50.5 (9)O1—C1—C2—N1177.9 (5)
O4—C5—C4—O68.5 (10)O2—C1—C2—C3125.4 (6)
O3—C5—C4—O6175.1 (4)O1—C1—C2—C354.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O6i0.891.952.765 (9)152
N1—H1C···O4i0.892.393.045 (6)130
N1—H1A···O1Wii0.892.012.891 (6)170
O1W—H1W1···O5iii0.90 (2)1.83 (3)2.721 (9)168 (5)
O1W—H2W1···O1iv0.88 (2)2.00 (3)2.860 (5)166 (6)
O3—H3···O6v0.821.752.567 (5)174
N1—H1B···O50.891.922.775 (5)161
O1—H1···O1W0.821.832.598 (7)156
N1—H1A···O2ii0.893.534.100 (9)125
O1—H1···O2iii0.822.863.331 (4)118
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y1/2, z+3/2; (v) x, y+1/2, z1/2.
(050) DL-alaninium semi-oxalate hydrate top
Crystal data top
C3H8NO2·C2HO4·H2OF(000) = 416
Mr = 197.15Dx = 1.577 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1220 reflections
a = 12.451 (6) Åθ = 2.0–28.0°
b = 6.4259 (4) ŵ = 0.15 mm1
c = 11.317 (2) ÅT = 293 K
β = 113.54 (4)°Prism, colorless
V = 830.2 (5) Å30.15 × 0.14 × 0.05 mm
Z = 4
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
795 independent reflections
Radiation source: Enhance (Mo) X-ray Source527 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Detector resolution: 10.3457 pixels mm-1θmax = 28.1°, θmin = 3.6°
rotation method scansh = 1010
Absorption correction: gaussian
Absorb Angel (2004) J. Appl. Cryst. 37:486-492
k = 88
Tmin = 0.386, Tmax = 0.478l = 1414
4723 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.1552P]
where P = (Fo2 + 2Fc2)/3
795 reflections(Δ/σ)max < 0.001
126 parametersΔρmax = 0.12 e Å3
132 restraintsΔρmin = 0.17 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.0793 (5)0.2938 (3)0.4413 (3)0.038 (2)
H30.04680.28690.36250.046*
O60.0066 (5)0.2167 (3)0.6944 (3)0.033 (2)
O40.0933 (7)0.1915 (5)0.4362 (4)0.039 (2)
O50.1682 (7)0.2921 (5)0.6970 (4)0.040 (2)
C50.0048 (10)0.2429 (6)0.4918 (6)0.029 (3)
C40.0636 (10)0.2495 (6)0.6432 (6)0.026 (3)
O20.4195 (5)0.4665 (3)0.8620 (3)0.042 (2)
O10.4562 (5)0.7980 (3)0.8311 (3)0.045 (2)
H10.50760.74670.81220.054*
N10.2305 (6)0.5569 (4)0.9072 (4)0.034 (3)
H1A0.27400.51020.98590.051*
H1B0.21940.45500.85020.051*
H1C0.16150.59970.90450.051*
C10.3953 (7)0.6470 (5)0.8564 (4)0.031 (2)
C20.2909 (7)0.7321 (4)0.8757 (4)0.028 (3)
H20.23720.79140.79360.034*
C30.3199 (7)0.9004 (5)0.9768 (5)0.037 (4)
H3A0.38160.85341.05500.055*
H3B0.25160.93170.99300.055*
H3C0.34481.02330.94660.055*
O1W0.6493 (5)0.6282 (4)0.8432 (3)0.037 (2)
H1W10.704 (4)0.696 (5)0.825 (4)0.045*
H2W10.620 (5)0.524 (4)0.788 (3)0.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.044 (7)0.0529 (13)0.022 (2)0.0127 (19)0.017 (3)0.0034 (12)
O60.026 (7)0.0526 (13)0.024 (2)0.004 (2)0.014 (4)0.0010 (12)
O40.038 (7)0.0502 (19)0.031 (3)0.001 (3)0.016 (4)0.0012 (16)
O50.039 (7)0.0537 (18)0.034 (3)0.009 (3)0.022 (4)0.0115 (16)
C50.042 (9)0.0223 (19)0.031 (4)0.005 (3)0.023 (5)0.0037 (19)
C40.033 (9)0.0220 (17)0.031 (4)0.005 (3)0.019 (5)0.0022 (19)
O20.030 (7)0.0402 (14)0.059 (3)0.0019 (19)0.020 (4)0.0102 (13)
O10.043 (7)0.0451 (13)0.059 (3)0.0043 (19)0.032 (4)0.0036 (13)
N10.034 (9)0.0390 (15)0.033 (3)0.000 (2)0.018 (5)0.0039 (14)
C10.029 (8)0.0368 (17)0.031 (3)0.003 (3)0.014 (4)0.0021 (17)
C20.021 (9)0.0326 (17)0.028 (3)0.004 (2)0.006 (5)0.0018 (16)
C30.021 (14)0.043 (2)0.048 (4)0.003 (3)0.015 (7)0.0123 (19)
O1W0.034 (7)0.0422 (13)0.037 (2)0.006 (2)0.017 (4)0.0000 (13)
Geometric parameters (Å, º) top
O3—C51.311 (8)N1—H1B0.8900
O3—H30.8200N1—H1C0.8900
O6—C41.245 (8)C1—C21.504 (9)
O4—C51.175 (13)C2—C31.510 (5)
O5—C41.229 (13)C2—H20.9800
C5—C41.572 (10)C3—H3A0.9600
O2—C11.194 (4)C3—H3B0.9600
O1—C11.331 (5)C3—H3C0.9600
O1—H10.8200O1W—H1W10.907 (19)
N1—C21.475 (5)O1W—H2W10.890 (19)
N1—H1A0.8900
C5—O3—H3109.5O2—C1—C2124.0 (4)
O4—C5—O3127.0 (6)O1—C1—C2111.5 (3)
O4—C5—C4121.5 (6)N1—C2—C1108.2 (3)
O3—C5—C4111.4 (8)N1—C2—C3110.8 (2)
O5—C4—O6127.6 (6)C1—C2—C3114.3 (6)
O5—C4—C5119.1 (6)N1—C2—H2107.8
O6—C4—C5113.3 (9)C1—C2—H2107.8
C1—O1—H1109.5C3—C2—H2107.8
C2—N1—H1A109.5C2—C3—H3A109.5
C2—N1—H1B109.5C2—C3—H3B109.5
H1A—N1—H1B109.5H3A—C3—H3B109.5
C2—N1—H1C109.5C2—C3—H3C109.5
H1A—N1—H1C109.5H3A—C3—H3C109.5
H1B—N1—H1C109.5H3B—C3—H3C109.5
O2—C1—O1124.5 (5)H1W1—O1W—H2W1109 (3)
O4—C5—C4—O5175.6 (7)O2—C1—C2—N12.4 (7)
O3—C5—C4—O52.3 (8)O1—C1—C2—N1178.3 (4)
O4—C5—C4—O66.9 (9)O2—C1—C2—C3126.3 (5)
O3—C5—C4—O6175.1 (4)O1—C1—C2—C354.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O6i0.891.952.755 (8)149
N1—H1C···O4i0.892.363.037 (6)134
N1—H1A···O1Wii0.891.992.873 (5)171
O1W—H1W1···O5iii0.91 (2)1.81 (2)2.703 (8)169 (4)
O1W—H2W1···O1iv0.89 (2)1.95 (2)2.837 (5)175 (5)
O3—H3···O6v0.821.752.563 (4)173
N1—H1B···O50.891.902.772 (4)164
O1—H1···O1W0.821.822.593 (7)156
N1—H1A···O2ii0.893.514.092 (8)126
O1—H1···O2iii0.822.853.323 (4)119
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y1/2, z+3/2; (v) x, y+1/2, z1/2.
(110) DL-alaninium semi-oxalate hydrate top
Crystal data top
C3H8NO2·C2HO4·H2OF(000) = 416
Mr = 197.15Dx = 1.625 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1218 reflections
a = 12.421 (7) Åθ = 2.0–28.1°
b = 6.2751 (4) ŵ = 0.16 mm1
c = 11.273 (3) ÅT = 293 K
β = 113.48 (5)°Prism, colorless
V = 805.8 (5) Å30.15 × 0.14 × 0.05 mm
Z = 4
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
787 independent reflections
Radiation source: Enhance (Mo) X-ray Source497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 10.3457 pixels mm-1θmax = 28.2°, θmin = 3.6°
rotation method scansh = 1010
Absorption correction: gaussian
Absorb Angel (2004) J. Appl. Cryst. 37:486-492
k = 77
Tmin = 0.383, Tmax = 0.478l = 1414
4503 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0446P)2]
where P = (Fo2 + 2Fc2)/3
787 reflections(Δ/σ)max < 0.001
126 parametersΔρmax = 0.15 e Å3
132 restraintsΔρmin = 0.14 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.0803 (4)0.2962 (3)0.4407 (3)0.037 (2)
H30.04770.28920.36170.044*
O60.0067 (4)0.2159 (3)0.6941 (3)0.037 (2)
O40.0945 (7)0.1946 (6)0.4354 (4)0.040 (2)
O50.1686 (7)0.2895 (6)0.6973 (4)0.040 (2)
C50.0063 (10)0.2429 (7)0.4915 (6)0.027 (3)
C40.0635 (9)0.2503 (7)0.6423 (6)0.030 (3)
O20.4214 (5)0.4611 (3)0.8640 (3)0.042 (2)
O10.4579 (5)0.7999 (3)0.8307 (3)0.044 (2)
H10.50910.74580.81190.053*
N10.2299 (6)0.5556 (4)0.9083 (3)0.038 (3)
H1A0.27430.50330.98590.058*
H1B0.21540.45360.84910.058*
H1C0.16250.60280.90880.058*
C10.3961 (6)0.6464 (5)0.8573 (4)0.031 (2)
C20.2931 (7)0.7356 (5)0.8768 (4)0.032 (3)
H20.23990.79750.79450.039*
C30.3223 (7)0.9067 (5)0.9782 (5)0.043 (4)
H3A0.38020.85441.05820.065*
H3B0.25270.94590.99030.065*
H3C0.35281.02910.95070.065*
O1W0.6486 (5)0.6277 (4)0.8429 (3)0.035 (2)
H1W10.693 (4)0.716 (5)0.817 (4)0.042*
H2W10.641 (6)0.530 (4)0.785 (3)0.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.046 (6)0.0473 (13)0.0201 (19)0.0051 (18)0.018 (3)0.0021 (11)
O60.041 (7)0.0542 (13)0.026 (2)0.0014 (19)0.022 (4)0.0006 (12)
O40.045 (7)0.0499 (19)0.029 (3)0.000 (3)0.020 (4)0.0036 (16)
O50.037 (7)0.0577 (19)0.030 (3)0.004 (3)0.019 (4)0.0112 (17)
C50.033 (9)0.025 (2)0.033 (4)0.000 (3)0.024 (5)0.001 (2)
C40.044 (9)0.0237 (18)0.028 (4)0.001 (3)0.021 (5)0.001 (2)
O20.036 (7)0.0374 (13)0.059 (2)0.0039 (19)0.026 (4)0.0089 (13)
O10.040 (7)0.0478 (14)0.052 (2)0.002 (2)0.027 (4)0.0059 (13)
N10.054 (9)0.0362 (15)0.037 (3)0.003 (2)0.030 (5)0.0060 (14)
C10.032 (7)0.0407 (18)0.021 (3)0.001 (3)0.012 (4)0.0031 (17)
C20.034 (9)0.0351 (17)0.029 (3)0.004 (3)0.015 (5)0.0012 (16)
C30.053 (13)0.0354 (19)0.047 (4)0.003 (3)0.026 (6)0.0114 (18)
O1W0.032 (7)0.0418 (13)0.035 (2)0.002 (2)0.017 (4)0.0027 (12)
Geometric parameters (Å, º) top
O3—C51.305 (7)N1—H1B0.8900
O3—H30.8200N1—H1C0.8900
O6—C41.247 (8)C1—C21.490 (8)
O4—C51.195 (13)C2—C31.503 (5)
O5—C41.226 (13)C2—H20.9800
C5—C41.561 (10)C3—H3A0.9600
O2—C11.199 (4)C3—H3B0.9600
O1—C11.338 (5)C3—H3C0.9600
O1—H10.8200O1W—H1W10.908 (19)
N1—C21.497 (5)O1W—H2W10.875 (17)
N1—H1A0.8900
C5—O3—H3109.5O2—C1—C2125.0 (4)
O4—C5—O3127.3 (6)O1—C1—C2111.4 (3)
O4—C5—C4120.7 (7)C1—C2—N1108.3 (3)
O3—C5—C4112.1 (8)C1—C2—C3114.8 (6)
O5—C4—O6126.9 (6)N1—C2—C3110.4 (2)
O5—C4—C5119.2 (7)C1—C2—H2107.7
O6—C4—C5113.9 (9)N1—C2—H2107.7
C1—O1—H1109.5C3—C2—H2107.7
C2—N1—H1A109.5C2—C3—H3A109.5
C2—N1—H1B109.5C2—C3—H3B109.5
H1A—N1—H1B109.5H3A—C3—H3B109.5
C2—N1—H1C109.5C2—C3—H3C109.5
H1A—N1—H1C109.5H3A—C3—H3C109.5
H1B—N1—H1C109.5H3B—C3—H3C109.5
O2—C1—O1123.6 (5)H1W1—O1W—H2W195 (3)
O4—C5—C4—O5176.2 (7)O2—C1—C2—N11.2 (7)
O3—C5—C4—O54.5 (9)O1—C1—C2—N1179.0 (4)
O4—C5—C4—O64.4 (9)O2—C1—C2—C3125.0 (5)
O3—C5—C4—O6174.9 (4)O1—C1—C2—C355.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O6i0.891.952.736 (8)146
N1—H1C···O4i0.892.313.010 (6)136
N1—H1A···O1Wii0.891.962.845 (5)172
O1W—H1W1···O5iii0.91 (2)1.85 (3)2.685 (8)152 (4)
O1W—H2W1···O1iv0.88 (2)2.00 (4)2.783 (5)148 (6)
O3—H3···O6v0.821.732.551 (4)174
N1—H1B···O50.891.882.754 (4)167
O1—H1···O1W0.821.792.557 (7)156
N1—H1A···O2ii0.893.484.062 (8)126
O1—H1···O2iii0.822.813.273 (4)118
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y1/2, z+3/2; (v) x, y+1/2, z1/2.
(150) DL-alaninium semi-oxalate hydrate top
Crystal data top
C3H8NO2·C2HO4·H2OF(000) = 416
Mr = 197.15Dx = 1.655 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1211 reflections
a = 12.406 (10) Åθ = 2.0–28.1°
b = 6.1807 (6) ŵ = 0.16 mm1
c = 11.236 (4) ÅT = 293 K
β = 113.29 (7)°Prism, colorless
V = 791.3 (7) Å30.15 × 0.14 × 0.05 mm
Z = 4
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
763 independent reflections
Radiation source: Enhance (Mo) X-ray Source489 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
Detector resolution: 10.3457 pixels mm-1θmax = 28.1°, θmin = 3.6°
rotation method scansh = 1010
Absorption correction: gaussian
Absorb Angel (2004) J. Appl. Cryst. 37:486-492
k = 77
Tmin = 0.389, Tmax = 0.478l = 1414
4391 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0393P)2]
where P = (Fo2 + 2Fc2)/3
763 reflections(Δ/σ)max < 0.001
126 parametersΔρmax = 0.16 e Å3
132 restraintsΔρmin = 0.14 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.0812 (4)0.2971 (3)0.4405 (3)0.036 (2)
H30.04860.29010.36130.044*
O60.0058 (4)0.2161 (3)0.6948 (3)0.034 (2)
O40.0933 (6)0.1960 (5)0.4353 (4)0.037 (2)
O50.1678 (7)0.2899 (5)0.6966 (4)0.038 (2)
C50.0066 (9)0.2468 (7)0.4916 (6)0.029 (3)
C40.0635 (9)0.2490 (7)0.6423 (6)0.026 (3)
O20.4216 (4)0.4569 (3)0.8652 (3)0.038 (2)
O10.4582 (5)0.7999 (3)0.8301 (3)0.044 (2)
H10.50930.74360.81140.053*
N10.2300 (6)0.5565 (4)0.9090 (3)0.030 (3)
H1A0.27470.50560.98710.045*
H1B0.21600.45160.85060.045*
H1C0.16230.60360.90930.045*
C10.3952 (6)0.6457 (5)0.8566 (4)0.028 (2)
C20.2914 (7)0.7379 (5)0.8757 (4)0.028 (3)
H20.23800.79990.79310.034*
C30.3213 (6)0.9118 (5)0.9776 (5)0.039 (4)
H3A0.37890.85801.05760.059*
H3B0.25190.95280.99000.059*
H3C0.35241.03550.95010.059*
O1W0.6493 (5)0.6281 (4)0.8431 (3)0.037 (2)
H1W10.695 (4)0.714 (5)0.818 (4)0.045*
H2W10.629 (5)0.528 (4)0.781 (3)0.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.046 (6)0.0473 (13)0.0205 (19)0.0090 (18)0.018 (3)0.0015 (11)
O60.034 (7)0.0498 (13)0.022 (2)0.0018 (18)0.016 (4)0.0000 (11)
O40.041 (7)0.0466 (19)0.026 (3)0.000 (2)0.016 (4)0.0013 (15)
O50.040 (7)0.0493 (18)0.033 (3)0.009 (3)0.023 (4)0.0115 (16)
C50.041 (9)0.0223 (19)0.033 (4)0.003 (3)0.026 (5)0.004 (2)
C40.032 (9)0.0218 (18)0.028 (4)0.007 (3)0.018 (5)0.005 (2)
O20.026 (7)0.0357 (13)0.056 (2)0.0019 (18)0.022 (4)0.0070 (12)
O10.046 (7)0.0436 (13)0.052 (2)0.0049 (19)0.030 (4)0.0034 (12)
N10.028 (9)0.0354 (14)0.029 (3)0.002 (2)0.015 (5)0.0036 (14)
C10.024 (7)0.0394 (18)0.023 (3)0.003 (3)0.010 (4)0.0042 (16)
C20.022 (9)0.0367 (17)0.023 (3)0.000 (3)0.007 (5)0.0031 (16)
C30.041 (13)0.0329 (19)0.047 (4)0.001 (3)0.020 (6)0.0091 (17)
O1W0.040 (7)0.0425 (13)0.036 (2)0.001 (2)0.021 (4)0.0022 (12)
Geometric parameters (Å, º) top
O3—C51.305 (7)N1—H1B0.8900
O3—H30.8200N1—H1C0.8900
O6—C41.237 (8)C1—C21.499 (8)
O4—C51.189 (13)C2—C31.506 (5)
O5—C41.219 (13)C2—H20.9800
C5—C41.556 (10)C3—H3A0.9600
O2—C11.205 (4)C3—H3B0.9600
O1—C11.339 (5)C3—H3C0.9600
O1—H10.8200O1W—H1W10.899 (19)
N1—C21.485 (5)O1W—H2W10.894 (18)
N1—H1A0.8900
C5—O3—H3109.5O2—C1—C2125.3 (4)
O4—C5—O3126.9 (6)O1—C1—C2111.8 (3)
O4—C5—C4120.6 (6)N1—C2—C1107.7 (3)
O3—C5—C4112.4 (8)N1—C2—C3110.1 (2)
O5—C4—O6126.6 (6)C1—C2—C3114.4 (6)
O5—C4—C5118.8 (7)N1—C2—H2108.2
O6—C4—C5114.6 (9)C1—C2—H2108.2
C1—O1—H1109.5C3—C2—H2108.2
C2—N1—H1A109.5C2—C3—H3A109.5
C2—N1—H1B109.5C2—C3—H3B109.5
H1A—N1—H1B109.5H3A—C3—H3B109.5
C2—N1—H1C109.5C2—C3—H3C109.5
H1A—N1—H1C109.5H3A—C3—H3C109.5
H1B—N1—H1C109.5H3B—C3—H3C109.5
O2—C1—O1122.9 (5)H1W1—O1W—H2W1101 (3)
O4—C5—C4—O5175.9 (7)O2—C1—C2—N11.1 (7)
O3—C5—C4—O51.7 (9)O1—C1—C2—N1178.0 (4)
O4—C5—C4—O66.9 (9)O2—C1—C2—C3123.8 (5)
O3—C5—C4—O6175.5 (4)O1—C1—C2—C355.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O6i0.891.962.739 (8)146
N1—H1C···O4i0.892.303.004 (6)136
N1—H1A···O1Wii0.891.952.829 (5)171
O1W—H1W1···O5iii0.90 (2)1.84 (3)2.673 (8)154 (4)
O1W—H2W1···O1iv0.89 (2)1.91 (3)2.762 (5)160 (5)
O3—H3···O6v0.821.722.537 (4)174
N1—H1B···O50.891.882.748 (4)165
O1—H1···O1W0.821.782.548 (7)156
N1—H1A···O2ii0.893.474.057 (9)126
O1—H1···O2iii0.822.793.251 (4)118
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y1/2, z+3/2; (v) x, y+1/2, z1/2.
(240) DL-alaninium semi-oxalate hydrate top
Crystal data top
C3H8NO2·C2HO4·H2OF(000) = 416
Mr = 197.15Dx = 1.755 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1247 reflections
a = 12.142 (11) Åθ = 2.0–28.1°
b = 6.1377 (6) ŵ = 0.17 mm1
c = 11.231 (5) ÅT = 293 K
β = 116.97 (9)°Prism, colorless
V = 746.0 (8) Å30.15 × 0.14 × 0.05 mm
Z = 4
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
670 independent reflections
Radiation source: Enhance (Mo) X-ray Source480 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 10.3457 pixels mm-1θmax = 28.2°, θmin = 3.6°
rotation method scansh = 1010
Absorption correction: gaussian
Absorb Angel (2004) J. Appl. Cryst. 37:486-492
k = 77
Tmin = 0.388, Tmax = 0.477l = 1414
3999 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.029P)2 + 0.303P]
where P = (Fo2 + 2Fc2)/3
670 reflections(Δ/σ)max < 0.001
126 parametersΔρmax = 0.14 e Å3
132 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.0666 (5)0.3010 (3)0.4535 (3)0.024 (2)
H30.03280.29180.37180.029*
O60.0246 (5)0.2157 (3)0.7019 (3)0.031 (2)
O40.1151 (7)0.1799 (5)0.4348 (4)0.027 (2)
O50.1568 (8)0.3151 (5)0.7172 (5)0.032 (2)
C50.0107 (10)0.2423 (6)0.4986 (7)0.018 (3)
C40.0531 (10)0.2590 (6)0.6581 (7)0.018 (3)
O20.4329 (5)0.4900 (3)0.8616 (3)0.032 (2)
O10.4220 (5)0.8050 (3)0.7623 (3)0.030 (2)
H10.47450.74680.74610.036*
N10.2662 (6)0.5718 (4)0.9401 (4)0.023 (3)
H1A0.33530.52421.00830.035*
H1B0.23200.46430.88170.035*
H1C0.21370.61660.97020.035*
C10.3894 (7)0.6701 (5)0.8329 (4)0.021 (3)
C20.2959 (7)0.7562 (4)0.8739 (5)0.020 (3)
H20.22110.79840.79380.024*
C30.3419 (8)0.9516 (5)0.9695 (5)0.029 (4)
H3A0.41220.90861.05050.044*
H3B0.27721.00060.98980.044*
H3C0.36501.06760.92800.044*
O1W0.6640 (5)0.6684 (4)0.8268 (3)0.026 (2)
H1W10.721 (4)0.744 (5)0.813 (4)0.031*
H2W10.656 (7)0.518 (3)0.805 (4)0.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.022 (7)0.0382 (12)0.014 (2)0.0023 (18)0.009 (4)0.0015 (12)
O60.036 (7)0.0413 (13)0.022 (2)0.0059 (19)0.020 (4)0.0012 (12)
O40.026 (7)0.0369 (17)0.017 (3)0.010 (2)0.009 (4)0.0033 (15)
O50.033 (7)0.0404 (17)0.025 (3)0.014 (3)0.014 (4)0.0117 (16)
C50.023 (9)0.0154 (18)0.016 (4)0.004 (3)0.010 (5)0.004 (2)
C40.019 (9)0.0198 (19)0.017 (4)0.002 (3)0.011 (5)0.002 (2)
O20.029 (7)0.0319 (14)0.037 (3)0.0053 (19)0.016 (4)0.0025 (13)
O10.030 (7)0.0389 (13)0.037 (3)0.0019 (19)0.028 (4)0.0016 (13)
N10.027 (11)0.0272 (15)0.017 (3)0.002 (2)0.011 (6)0.0004 (14)
C10.015 (8)0.0299 (17)0.014 (3)0.003 (3)0.004 (5)0.0064 (17)
C20.018 (10)0.0253 (17)0.014 (3)0.001 (2)0.005 (6)0.0015 (15)
C30.036 (13)0.0244 (17)0.032 (4)0.001 (3)0.021 (7)0.0056 (16)
O1W0.021 (7)0.0294 (13)0.026 (3)0.0016 (18)0.010 (4)0.0024 (12)
Geometric parameters (Å, º) top
O3—C51.303 (8)N1—H1B0.8900
O3—H30.8200N1—H1C0.8900
O6—C41.275 (8)C1—C21.502 (8)
O4—C51.201 (13)C2—C31.536 (5)
O5—C41.177 (13)C2—H20.9800
C5—C41.600 (10)C3—H3A0.9600
O2—C11.204 (5)C3—H3B0.9600
O1—C11.324 (4)C3—H3C0.9600
O1—H10.8200O1W—H1W10.905 (19)
N1—C21.485 (4)O1W—H2W10.948 (18)
N1—H1A0.8900
C5—O3—H3109.5O2—C1—C2122.8 (3)
O4—C5—O3127.4 (5)O1—C1—C2115.9 (4)
O4—C5—C4122.2 (6)N1—C2—C1105.9 (3)
O3—C5—C4110.4 (8)N1—C2—C3109.8 (2)
O5—C4—O6129.3 (6)C1—C2—C3113.8 (6)
O5—C4—C5120.1 (6)N1—C2—H2109.1
O6—C4—C5110.5 (9)C1—C2—H2109.1
C1—O1—H1109.5C3—C2—H2109.1
C2—N1—H1A109.5C2—C3—H3A109.5
C2—N1—H1B109.5C2—C3—H3B109.5
H1A—N1—H1B109.5H3A—C3—H3B109.5
C2—N1—H1C109.5C2—C3—H3C109.5
H1A—N1—H1C109.5H3A—C3—H3C109.5
H1B—N1—H1C109.5H3B—C3—H3C109.5
O2—C1—O1121.3 (5)H1W1—O1W—H2W1117 (4)
O4—C5—C4—O5177.8 (7)O2—C1—C2—N14.9 (8)
O3—C5—C4—O51.1 (8)O1—C1—C2—N1175.1 (5)
O4—C5—C4—O65.4 (8)O2—C1—C2—C3115.8 (6)
O3—C5—C4—O6175.7 (4)O1—C1—C2—C364.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O6i0.892.312.772 (9)112
N1—H1C···O4i0.891.972.849 (6)169
N1—H1A···O1Wii0.892.192.781 (4)123
O1W—H1W1···O5iii0.91 (2)1.72 (2)2.601 (8)164 (3)
O1W—H2W1···O1iv0.95 (2)1.59 (4)2.474 (4)153 (7)
O3—H3···O6v0.821.712.527 (5)174
N1—H1B···O50.891.892.739 (6)160
O1—H1···O1W0.822.112.816 (8)144
N1—H1A···O2ii0.892.523.327 (9)152
O1—H1···O2iii0.822.492.924 (5)115
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y1/2, z+3/2; (v) x, y+1/2, z1/2.
(310) DL-alaninium semi-oxalate hydrate top
Crystal data top
C3H8NO2·C2HO4·H2OF(000) = 416
Mr = 197.15Dx = 1.806 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1238 reflections
a = 12.037 (9) Åθ = 2.0–28.1°
b = 6.0534 (4) ŵ = 0.17 mm1
c = 11.211 (4) ÅT = 293 K
β = 117.41 (7)°Prism, colorless
V = 725.2 (6) Å30.15 × 0.14 × 0.05 mm
Z = 4
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
652 independent reflections
Radiation source: Enhance (Mo) X-ray Source464 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 10.3457 pixels mm-1θmax = 28.1°, θmin = 3.6°
rotation method scansh = 1010
Absorption correction: gaussian
Absorb Angel (2004) J. Appl. Cryst. 37:486-492
k = 77
Tmin = 0.386, Tmax = 0.477l = 1414
3825 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0329P)2 + 0.365P]
where P = (Fo2 + 2Fc2)/3
652 reflections(Δ/σ)max < 0.001
126 parametersΔρmax = 0.19 e Å3
132 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.0663 (5)0.3035 (3)0.4532 (3)0.025 (2)
H30.03210.29400.37100.030*
O60.0264 (5)0.2107 (4)0.7009 (3)0.031 (2)
O40.1171 (7)0.1767 (5)0.4330 (5)0.028 (2)
O50.1555 (7)0.3193 (5)0.7172 (5)0.028 (2)
C50.0120 (11)0.2436 (6)0.4979 (7)0.020 (3)
C40.0495 (11)0.2575 (6)0.6565 (7)0.020 (3)
O20.4362 (5)0.4914 (3)0.8625 (3)0.025 (2)
O10.4199 (5)0.8065 (4)0.7582 (3)0.030 (2)
H10.47280.74730.74210.036*
N10.2707 (6)0.5735 (5)0.9440 (4)0.022 (3)
H1A0.34120.53071.01430.033*
H1B0.23900.46130.88690.033*
H1C0.21580.61660.97180.033*
C10.3903 (7)0.6731 (5)0.8323 (5)0.018 (3)
C20.2978 (7)0.7602 (4)0.8756 (5)0.020 (3)
H20.22070.80040.79550.024*
C30.3429 (7)0.9593 (5)0.9693 (5)0.022 (4)
H3A0.41360.91761.05200.033*
H3B0.27661.01030.98740.033*
H3C0.36681.07540.92740.033*
O1W0.6645 (5)0.6757 (4)0.8277 (3)0.018 (2)
H1W10.709 (4)0.763 (5)0.803 (4)0.022*
H2W10.657 (7)0.529 (3)0.801 (4)0.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.028 (7)0.0353 (12)0.013 (2)0.0009 (18)0.011 (4)0.0019 (12)
O60.042 (7)0.0391 (13)0.021 (2)0.0110 (19)0.022 (4)0.0029 (13)
O40.033 (7)0.0338 (17)0.022 (3)0.008 (2)0.016 (4)0.0035 (16)
O50.031 (7)0.0343 (16)0.023 (3)0.003 (2)0.016 (4)0.0056 (16)
C50.029 (9)0.0163 (18)0.019 (4)0.005 (3)0.014 (5)0.005 (2)
C40.027 (10)0.0179 (18)0.023 (4)0.007 (3)0.017 (6)0.004 (2)
O20.016 (7)0.0294 (14)0.030 (3)0.0028 (18)0.012 (4)0.0027 (12)
O10.036 (7)0.0369 (13)0.029 (3)0.000 (2)0.025 (4)0.0007 (13)
N10.027 (11)0.0266 (15)0.017 (3)0.007 (2)0.014 (6)0.0017 (14)
C10.012 (8)0.0266 (17)0.012 (3)0.002 (2)0.002 (5)0.0043 (17)
C20.019 (10)0.0250 (17)0.013 (4)0.004 (3)0.005 (6)0.0036 (16)
C30.016 (13)0.0262 (18)0.025 (4)0.008 (3)0.010 (7)0.0000 (17)
O1W0.007 (7)0.0268 (12)0.016 (3)0.0007 (18)0.000 (4)0.0012 (12)
Geometric parameters (Å, º) top
O3—C51.305 (8)N1—H1B0.8900
O3—H30.8200N1—H1C0.8900
O6—C41.257 (8)C1—C21.500 (7)
O4—C51.203 (13)C2—C31.525 (6)
O5—C41.197 (13)C2—H20.9800
C5—C41.583 (10)C3—H3A0.9600
O2—C11.207 (5)C3—H3B0.9600
O1—C11.320 (4)C3—H3C0.9600
O1—H10.8200O1W—H1W10.881 (19)
N1—C21.484 (4)O1W—H2W10.927 (17)
N1—H1A0.8900
C5—O3—H3109.5O2—C1—C2122.8 (3)
O4—C5—O3127.3 (5)O1—C1—C2116.4 (4)
O4—C5—C4121.0 (6)N1—C2—C1105.8 (3)
O3—C5—C4111.7 (8)N1—C2—C3109.8 (3)
O5—C4—O6128.6 (6)C1—C2—C3114.8 (6)
O5—C4—C5118.7 (6)N1—C2—H2108.8
O6—C4—C5112.6 (9)C1—C2—H2108.8
C1—O1—H1109.5C3—C2—H2108.8
C2—N1—H1A109.5C2—C3—H3A109.5
C2—N1—H1B109.5C2—C3—H3B109.5
H1A—N1—H1B109.5H3A—C3—H3B109.5
C2—N1—H1C109.5C2—C3—H3C109.5
H1A—N1—H1C109.5H3A—C3—H3C109.5
H1B—N1—H1C109.5H3B—C3—H3C109.5
O2—C1—O1120.8 (5)H1W1—O1W—H2W1117 (3)
O4—C5—C4—O5177.9 (7)O2—C1—C2—N15.8 (8)
O3—C5—C4—O50.4 (9)O1—C1—C2—N1174.2 (5)
O4—C5—C4—O65.7 (9)O2—C1—C2—C3115.5 (6)
O3—C5—C4—O6176.8 (4)O1—C1—C2—C364.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O6i0.892.282.753 (8)113
N1—H1C···O4i0.891.962.839 (6)168
N1—H1A···O1Wii0.892.192.757 (4)121
O1W—H1W1···O5iii0.88 (2)1.78 (3)2.590 (7)152 (4)
O1W—H2W1···O1iv0.93 (2)1.59 (4)2.460 (4)154 (6)
O3—H3···O6v0.821.702.519 (4)174
N1—H1B···O50.891.902.740 (6)157
O1—H1···O1W0.822.102.791 (8)142
N1—H1A···O2ii0.892.393.203 (8)152
O1—H1···O2iii0.822.442.871 (5)114
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y1/2, z+3/2; (v) x, y+1/2, z1/2.
(360) DL-alaninium semi-oxalate hydrate top
Crystal data top
C3H8NO2·C2HO4·H2OF(000) = 416
Mr = 197.15Dx = 1.835 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1209 reflections
a = 11.976 (13) Åθ = 2.1–28.2°
b = 6.0032 (4) ŵ = 0.18 mm1
c = 11.199 (4) ÅT = 293 K
β = 117.61 (6)°Prism, colorless
V = 713.5 (8) Å30.15 × 0.14 × 0.05 mm
Z = 4
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
659 independent reflections
Radiation source: Enhance (Mo) X-ray Source475 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
Detector resolution: 10.3457 pixels mm-1θmax = 28.2°, θmin = 3.9°
rotation method scansh = 1010
Absorption correction: gaussian
Absorb Angel (2004) J. Appl. Cryst. 37:486-492
k = 77
Tmin = 0.387, Tmax = 0.477l = 1414
3789 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0601P)2]
where P = (Fo2 + 2Fc2)/3
659 reflections(Δ/σ)max < 0.001
126 parametersΔρmax = 0.19 e Å3
132 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.0665 (5)0.3052 (3)0.4533 (3)0.024 (2)
H30.03200.29550.37080.028*
O60.0254 (6)0.2069 (4)0.7008 (4)0.031 (2)
O40.1168 (7)0.1757 (5)0.4319 (5)0.025 (2)
O50.1561 (8)0.3216 (5)0.7178 (5)0.028 (2)
C50.0117 (11)0.2445 (6)0.4976 (7)0.018 (3)
C40.0488 (11)0.2581 (6)0.6552 (7)0.017 (3)
O20.4364 (5)0.4913 (3)0.8626 (3)0.026 (2)
O10.4184 (6)0.8067 (3)0.7560 (4)0.027 (2)
H10.47160.74790.73950.032*
N10.2729 (6)0.5744 (5)0.9463 (4)0.018 (3)
H1A0.34460.52881.01500.026*
H1B0.23840.46260.88850.026*
H1C0.22000.61900.97690.026*
C10.3915 (8)0.6733 (5)0.8322 (5)0.017 (3)
C20.2991 (8)0.7628 (4)0.8769 (5)0.020 (3)
H20.22080.80120.79650.024*
C30.3418 (8)0.9629 (5)0.9681 (5)0.020 (4)
H3A0.41670.92621.04910.030*
H3B0.27661.00660.99040.030*
H3C0.35941.08350.92300.030*
O1W0.6650 (5)0.6792 (4)0.8280 (3)0.017 (2)
H1W10.712 (4)0.783 (5)0.818 (4)0.021*
H2W10.685 (7)0.534 (4)0.822 (4)0.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.027 (7)0.0320 (12)0.016 (2)0.0033 (17)0.014 (4)0.0007 (12)
O60.040 (7)0.0377 (13)0.023 (3)0.0068 (19)0.022 (4)0.0012 (13)
O40.026 (7)0.0306 (15)0.020 (3)0.008 (2)0.013 (4)0.0038 (15)
O50.030 (7)0.0354 (16)0.022 (3)0.010 (2)0.015 (4)0.0109 (16)
C50.028 (9)0.0122 (16)0.012 (4)0.004 (3)0.008 (5)0.0039 (18)
C40.022 (9)0.0152 (17)0.015 (4)0.002 (3)0.010 (5)0.0011 (19)
O20.031 (7)0.0225 (12)0.029 (3)0.0046 (17)0.016 (4)0.0014 (11)
O10.030 (7)0.0342 (12)0.026 (3)0.0011 (19)0.021 (4)0.0018 (13)
N10.015 (11)0.0231 (14)0.015 (3)0.001 (2)0.007 (6)0.0008 (14)
C10.014 (8)0.0258 (16)0.010 (3)0.002 (2)0.004 (5)0.0034 (17)
C20.024 (10)0.0210 (16)0.019 (4)0.002 (2)0.013 (6)0.0010 (16)
C30.014 (13)0.0240 (17)0.018 (4)0.001 (3)0.005 (7)0.0029 (17)
O1W0.008 (7)0.0219 (11)0.019 (3)0.0035 (17)0.003 (4)0.0007 (12)
Geometric parameters (Å, º) top
O3—C51.300 (8)N1—H1B0.8900
O3—H30.8200N1—H1C0.8900
O6—C41.252 (8)C1—C21.509 (7)
O4—C51.198 (13)C2—C31.504 (6)
O5—C41.206 (13)C2—H20.9800
C5—C41.569 (10)C3—H3A0.9600
O2—C11.196 (5)C3—H3B0.9600
O1—C11.315 (4)C3—H3C0.9600
O1—H10.8200O1W—H1W10.883 (19)
N1—C21.486 (4)O1W—H2W10.914 (18)
N1—H1A0.8900
C5—O3—H3109.5O2—C1—C2122.2 (3)
O4—C5—O3126.8 (5)O1—C1—C2115.9 (4)
O4—C5—C4121.0 (6)N1—C2—C3109.9 (3)
O3—C5—C4112.1 (9)N1—C2—C1105.5 (3)
O5—C4—O6127.4 (6)C3—C2—C1116.0 (6)
O5—C4—C5118.9 (6)N1—C2—H2108.4
O6—C4—C5113.6 (9)C3—C2—H2108.4
C1—O1—H1109.5C1—C2—H2108.4
C2—N1—H1A109.5C2—C3—H3A109.5
C2—N1—H1B109.5C2—C3—H3B109.5
H1A—N1—H1B109.5H3A—C3—H3B109.5
C2—N1—H1C109.5C2—C3—H3C109.5
H1A—N1—H1C109.5H3A—C3—H3C109.5
H1B—N1—H1C109.5H3B—C3—H3C109.5
O2—C1—O1121.9 (5)H1W1—O1W—H2W1117 (4)
O4—C5—C4—O5177.7 (7)O2—C1—C2—N15.7 (8)
O3—C5—C4—O50.6 (8)O1—C1—C2—N1173.4 (5)
O4—C5—C4—O64.9 (9)O2—C1—C2—C3116.2 (6)
O3—C5—C4—O6178.0 (4)O1—C1—C2—C364.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O6i0.892.322.758 (9)110
N1—H1C···O4i0.891.962.844 (6)170
N1—H1A···O1Wii0.892.202.741 (4)119
O1W—H1W1···O5iii0.88 (2)1.81 (3)2.570 (8)143 (3)
O1W—H2W1···O1iv0.91 (2)1.78 (6)2.452 (4)128 (6)
O3—H3···O6v0.821.702.515 (5)173
N1—H1B···O50.891.902.737 (6)157
O1—H1···O1W0.822.102.783 (8)141
N1—H1A···O2ii0.892.333.154 (9)154
O1—H1···O2iii0.822.412.855 (5)115
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y1/2, z+3/2; (v) x, y+1/2, z1/2.
(430) DL-alaninium semi-oxalate hydrate top
Crystal data top
C3H8NO2·C2HO4·H2OF(000) = 416
Mr = 197.15Dx = 1.869 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1187 reflections
a = 11.905 (10) Åθ = 2.1–28.0°
b = 5.9492 (4) ŵ = 0.18 mm1
c = 11.185 (3) ÅT = 293 K
β = 117.79 (4)°Prism, colorless
V = 700.7 (6) Å30.15 × 0.14 × 0.05 mm
Z = 4
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
648 independent reflections
Radiation source: Enhance (Mo) X-ray Source463 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
Detector resolution: 10.3457 pixels mm-1θmax = 28.1°, θmin = 3.9°
rotation method scansh = 1010
Absorption correction: gaussian
Absorb Angel (2004) J. Appl. Cryst. 37:486-492
k = 77
Tmin = 0.384, Tmax = 0.477l = 1414
3771 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.3729P]
where P = (Fo2 + 2Fc2)/3
648 reflections(Δ/σ)max < 0.001
126 parametersΔρmax = 0.17 e Å3
132 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.0674 (5)0.3067 (4)0.4531 (3)0.022 (2)
H30.03350.29750.37050.026*
O60.0259 (6)0.2023 (4)0.6997 (4)0.025 (2)
O40.1185 (8)0.1750 (5)0.4303 (5)0.023 (2)
O50.1565 (8)0.3238 (5)0.7181 (5)0.023 (2)
C50.0135 (11)0.2444 (7)0.4961 (7)0.014 (3)
C40.0494 (11)0.2569 (6)0.6546 (7)0.016 (3)
O20.4378 (6)0.4910 (3)0.8637 (4)0.023 (2)
O10.4168 (6)0.8064 (4)0.7539 (4)0.025 (2)
H10.47020.74700.73730.030*
N10.2740 (6)0.5759 (5)0.9480 (4)0.015 (3)
H1A0.34730.53011.01550.023*
H1B0.23760.46260.89090.023*
H1C0.22280.62210.98090.023*
C10.3925 (8)0.6754 (6)0.8323 (5)0.016 (3)
C20.2976 (8)0.7636 (5)0.8759 (5)0.017 (3)
H20.21820.80160.79550.020*
C30.3439 (8)0.9680 (5)0.9683 (6)0.017 (4)
H3A0.41730.92771.05100.025*
H3B0.27791.01940.98800.025*
H3C0.36591.08570.92430.025*
O1W0.6643 (5)0.6810 (4)0.8286 (3)0.017 (2)
H1W10.718 (4)0.775 (5)0.823 (4)0.020*
H2W10.681 (7)0.535 (4)0.827 (5)0.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.023 (7)0.0303 (13)0.015 (2)0.0027 (18)0.011 (4)0.0035 (12)
O60.023 (7)0.0386 (14)0.015 (3)0.010 (2)0.011 (4)0.0017 (13)
O40.026 (7)0.0273 (15)0.020 (3)0.010 (2)0.014 (4)0.0052 (16)
O50.019 (7)0.0327 (16)0.016 (3)0.007 (2)0.008 (4)0.0094 (17)
C50.015 (9)0.0119 (17)0.011 (4)0.005 (3)0.005 (5)0.0066 (19)
C40.022 (10)0.0130 (17)0.012 (4)0.006 (3)0.007 (6)0.0037 (19)
O20.025 (7)0.0217 (13)0.022 (3)0.0030 (17)0.011 (4)0.0014 (12)
O10.027 (7)0.0329 (13)0.026 (3)0.0046 (19)0.023 (4)0.0035 (14)
N10.013 (11)0.0226 (14)0.013 (4)0.001 (2)0.007 (6)0.0003 (15)
C10.014 (8)0.0214 (16)0.008 (3)0.002 (2)0.002 (5)0.0010 (17)
C20.019 (10)0.0205 (16)0.012 (4)0.003 (2)0.008 (6)0.0021 (16)
C30.010 (13)0.0209 (17)0.022 (4)0.001 (3)0.009 (7)0.0034 (17)
O1W0.010 (7)0.0197 (12)0.017 (3)0.0066 (18)0.003 (4)0.0019 (13)
Geometric parameters (Å, º) top
O3—C51.315 (8)N1—H1B0.8900
O3—H30.8200N1—H1C0.8900
O6—C41.259 (8)C1—C21.519 (8)
O4—C51.190 (13)C2—C31.523 (6)
O5—C41.201 (13)C2—H20.9800
C5—C41.572 (10)C3—H3A0.9600
O2—C11.201 (5)C3—H3B0.9600
O1—C11.303 (4)C3—H3C0.9600
O1—H10.8200O1W—H1W10.878 (19)
N1—C21.478 (4)O1W—H2W10.896 (18)
N1—H1A0.8900
C5—O3—H3109.5O2—C1—C2121.5 (3)
O4—C5—O3127.5 (5)O1—C1—C2116.3 (4)
O4—C5—C4121.6 (6)N1—C2—C1105.9 (3)
O3—C5—C4110.7 (9)N1—C2—C3109.5 (3)
O5—C4—O6127.3 (6)C1—C2—C3113.9 (6)
O5—C4—C5119.9 (6)N1—C2—H2109.1
O6—C4—C5112.7 (9)C1—C2—H2109.1
C1—O1—H1109.5C3—C2—H2109.1
C2—N1—H1A109.5C2—C3—H3A109.5
C2—N1—H1B109.5C2—C3—H3B109.5
H1A—N1—H1B109.5H3A—C3—H3B109.5
C2—N1—H1C109.5C2—C3—H3C109.5
H1A—N1—H1C109.5H3A—C3—H3C109.5
H1B—N1—H1C109.5H3B—C3—H3C109.5
O2—C1—O1122.2 (5)H1W1—O1W—H2W1116 (5)
O4—C5—C4—O5178.6 (7)O2—C1—C2—N13.9 (8)
O3—C5—C4—O52.2 (8)O1—C1—C2—N1172.9 (6)
O4—C5—C4—O64.8 (9)O2—C1—C2—C3116.5 (6)
O3—C5—C4—O6178.8 (4)O1—C1—C2—C366.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O6i0.892.322.732 (9)108
N1—H1C···O4i0.891.942.824 (6)170
N1—H1A···O1Wii0.892.202.722 (4)117
O1W—H1W1···O5iii0.88 (2)1.77 (3)2.566 (8)149 (3)
O1W—H2W1···O1iv0.90 (2)1.74 (6)2.433 (4)132 (7)
O3—H3···O6v0.821.702.517 (5)174
N1—H1B···O50.891.902.732 (6)155
O1—H1···O1W0.822.082.764 (8)140
N1—H1A···O2ii0.892.273.103 (9)155
O1—H1···O2iii0.822.392.837 (5)115
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y1/2, z+3/2; (v) x, y+1/2, z1/2.
(540) DL-alaninium semi-oxalate hydrate top
Crystal data top
C3H8NO2·C2HO4·H2OF(000) = 416
Mr = 197.15Dx = 1.915 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1173 reflections
a = 11.807 (8) Åθ = 2.1–28.0°
b = 5.8748 (4) ŵ = 0.18 mm1
c = 11.164 (4) ÅT = 293 K
β = 117.98 (6)°Prism, colorless
V = 683.9 (5) Å30.15 × 0.14 × 0.05 mm
Z = 4
Data collection top
Xcalibur, Ruby, Gemini ultra
diffractometer
637 independent reflections
Radiation source: Enhance (Mo) X-ray Source461 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
Detector resolution: 10.3457 pixels mm-1θmax = 28.1°, θmin = 3.7°
rotation method scansh = 1010
Absorption correction: gaussian
Absorb Angel (2004) J. Appl. Cryst. 37:486-492
k = 77
Tmin = 0.387, Tmax = 0.477l = 1414
3699 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.0977P]
where P = (Fo2 + 2Fc2)/3
637 reflections(Δ/σ)max < 0.001
126 parametersΔρmax = 0.18 e Å3
132 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.0687 (5)0.3083 (3)0.4526 (3)0.016 (2)
H30.03460.29910.36960.019*
O60.0271 (6)0.1966 (4)0.6982 (4)0.021 (2)
O40.1200 (8)0.1729 (5)0.4277 (5)0.021 (2)
O50.1565 (8)0.3284 (5)0.7177 (5)0.020 (2)
C50.0132 (11)0.2419 (6)0.4953 (7)0.012 (3)
C40.0504 (11)0.2561 (6)0.6541 (7)0.015 (3)
O20.4377 (5)0.4882 (3)0.8640 (3)0.021 (2)
O10.4145 (6)0.8061 (3)0.7505 (4)0.022 (2)
H10.46830.74580.73400.027*
N10.2756 (6)0.5769 (5)0.9503 (4)0.018 (3)
H1A0.35070.53221.01730.027*
H1B0.23850.46090.89410.027*
H1C0.22510.62370.98470.027*
C10.3917 (8)0.6749 (5)0.8316 (5)0.013 (3)
C20.2963 (8)0.7656 (4)0.8755 (5)0.016 (3)
H20.21530.80180.79500.019*
C30.3434 (8)0.9744 (5)0.9674 (5)0.019 (4)
H3A0.41990.93631.04870.029*
H3B0.27831.02310.99030.029*
H3C0.36161.09500.92090.029*
O1W0.6648 (6)0.6846 (4)0.8300 (3)0.015 (2)
H1W10.715 (4)0.764 (5)0.808 (5)0.018*
H2W10.669 (8)0.530 (3)0.829 (5)0.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.009 (7)0.0289 (12)0.008 (2)0.0013 (17)0.003 (4)0.0017 (11)
O60.020 (7)0.0320 (12)0.014 (3)0.0096 (19)0.011 (4)0.0021 (13)
O40.022 (7)0.0258 (15)0.014 (3)0.007 (2)0.008 (4)0.0032 (15)
O50.016 (7)0.0276 (15)0.018 (3)0.004 (2)0.009 (4)0.0072 (16)
C50.013 (9)0.0121 (16)0.009 (4)0.001 (3)0.003 (5)0.0014 (18)
C40.015 (9)0.0156 (17)0.010 (4)0.003 (3)0.003 (5)0.0030 (18)
O20.025 (7)0.0171 (11)0.020 (3)0.0001 (17)0.009 (4)0.0030 (11)
O10.025 (7)0.0326 (13)0.023 (3)0.0009 (19)0.022 (4)0.0007 (13)
N10.023 (11)0.0212 (14)0.014 (4)0.003 (2)0.012 (6)0.0013 (14)
C10.008 (8)0.0182 (15)0.007 (3)0.003 (2)0.001 (5)0.0064 (15)
C20.018 (10)0.0194 (15)0.008 (4)0.002 (2)0.005 (6)0.0013 (16)
C30.018 (14)0.0197 (17)0.026 (5)0.000 (2)0.015 (8)0.0037 (17)
O1W0.008 (7)0.0193 (11)0.011 (3)0.0021 (17)0.000 (4)0.0020 (12)
Geometric parameters (Å, º) top
O3—C51.322 (8)N1—H1B0.8900
O3—H30.8200N1—H1C0.8900
O6—C41.274 (8)C1—C21.520 (8)
O4—C51.196 (13)C2—C31.527 (6)
O5—C41.191 (13)C2—H20.9800
C5—C41.571 (10)C3—H3A0.9600
O2—C11.202 (5)C3—H3B0.9600
O1—C11.310 (4)C3—H3C0.9600
O1—H10.8200O1W—H1W10.883 (19)
N1—C21.476 (4)O1W—H2W10.912 (17)
N1—H1A0.8900
C5—O3—H3109.5O2—C1—C2121.5 (3)
O4—C5—O3127.3 (5)O1—C1—C2116.1 (4)
O4—C5—C4122.3 (6)N1—C2—C1105.2 (3)
O3—C5—C4110.4 (8)N1—C2—C3109.1 (3)
O5—C4—O6127.8 (5)C1—C2—C3114.0 (6)
O5—C4—C5120.2 (6)N1—C2—H2109.4
O6—C4—C5111.8 (9)C1—C2—H2109.4
C1—O1—H1109.5C3—C2—H2109.4
C2—N1—H1A109.5C2—C3—H3A109.5
C2—N1—H1B109.5C2—C3—H3B109.5
H1A—N1—H1B109.5H3A—C3—H3B109.5
C2—N1—H1C109.5C2—C3—H3C109.5
H1A—N1—H1C109.5H3A—C3—H3C109.5
H1B—N1—H1C109.5H3B—C3—H3C109.5
O2—C1—O1122.3 (5)H1W1—O1W—H2W1119 (4)
O4—C5—C4—O5179.1 (7)O2—C1—C2—N13.0 (8)
O3—C5—C4—O52.9 (9)O1—C1—C2—N1173.0 (6)
O4—C5—C4—O63.1 (9)O2—C1—C2—C3116.5 (6)
O3—C5—C4—O6178.9 (4)O1—C1—C2—C367.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O6i0.892.312.699 (9)106
N1—H1C···O4i0.891.932.809 (6)170
N1—H1A···O1Wii0.892.202.692 (4)114
O1W—H1W1···O5iii0.88 (2)1.71 (3)2.551 (8)159 (4)
O1W—H2W1···O1iv0.91 (2)1.63 (5)2.416 (4)142 (7)
O3—H3···O6v0.821.702.516 (5)174
N1—H1B···O50.891.912.725 (6)152
O1—H1···O1W0.822.082.751 (9)139
N1—H1A···O2ii0.892.223.053 (8)157
O1—H1···O2iii0.822.372.814 (5)115
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y1/2, z+3/2; (v) x, y+1/2, z1/2.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds