organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(4-methyl­phen­yl)-N′′-(2,2,2-tri­chloro­acet­yl)phospho­ric tri­amide

aFaculty of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran, bDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran, and cDepartment of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, Brno CZ-61137, Czech Republic
*Correspondence e-mail: a.raissi_shabari@yahoo.com

(Received 28 April 2012; accepted 11 May 2012; online 19 May 2012)

The P atom in the title compound, C16H17Cl3N3O2P, is bonded in a distorted tetra­hedral geometry with the phosphoryl and carbonyl groups anti with respect to one another. In the crystal, mol­ecules are linked through (N—H)2⋯O(=P) and N—H⋯O(=C) hydrogen bonds into chains along [001]. The phosphoryl O atom acts as a double hydrogen-bond acceptor.

Related literature

For phospho­ric triamides having a C(=O)NHP(=O) skeleton, see: Pourayoubi et al. (2011[Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265-o272.]). For the definition of a double hydrogen-bond acceptor, see: Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]); Pourayoubi et al. (2012[Pourayoubi, M., Nečas, M. & Negari, M. (2012). Acta Cryst. C68, o51-o56.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17Cl3N3O2P

  • Mr = 420.65

  • Monoclinic, P 21 /c

  • a = 17.5151 (6) Å

  • b = 10.8638 (4) Å

  • c = 9.8615 (3) Å

  • β = 97.565 (3)°

  • V = 1860.12 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 120 K

  • 0.60 × 0.60 × 0.60 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.955, Tmax = 1.000

  • 6796 measured reflections

  • 3265 independent reflections

  • 2820 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.072

  • S = 1.04

  • 3265 reflections

  • 240 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.77 (2) 2.17 (2) 2.8953 (19) 156 (2)
N2—H2N⋯O1i 0.76 (2) 2.23 (2) 2.948 (2) 159 (2)
N3—H3N⋯O2ii 0.75 (2) 2.31 (2) 3.008 (2) 157 (2)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: enCIFer (Allen et al., 2004)[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.].

Supporting information


Comment top

The structure determination of the title compound, P(O)[NHC(O)CCl3][NHC6H4(4-CH3)]2 (Fig. 1), was performed as a part of a project on the synthesis of new phosphoric triamides having a C(O)NHP(O) skeleton (Pourayoubi et al., 2011).

The PO (1.4727 (12) Å) and CO (1.211 (2) Å) bond lengths are standard for this category of compounds (Pourayoubi et al., 2011). The P atom has a distorted tetrahedral configuration (Fig. 1). The bond angles at the P atom are in the range 102.25 (8) – 118.28 (8)°. The P—N1 and P—N2 bonds (with lengths of 1.6195 (16) Å and 1.6345 (16) Å) are shorter than the P—N3 bond (1.7071 (16) Å). As might be expected the C15—N3 bond distance (1.349 (2) Å) is shorter than the other C—N bond distances.

In the crystal, each molecule is hydrogen-bonded to two adjacent molecules through NC(O)NHP(O)—H···O(C) and (N—H)2···O(P) hydrogen bonds along the c axis with the oxygen atom of phosphoryl group as a double-hydrogen bond acceptor (Steiner, 2002; Pourayoubi et al., 2012).

Related literature top

For phosphoric triamides having a C(O)NHP(O) skeleton, see: Pourayoubi et al. (2011). For the definition of a double hydrogen-bond acceptor, see: Steiner (2002); Pourayoubi et al. (2012).

Experimental top

CCl3C(O)NHP(O)Cl2 was synthesized from a reaction between phosphorus pentachloride (15.5 mmol) and 2,2,2-trichloroacetamide (15.5 mmol) in dry CCl4 at 353 K (3 h) and then treated with formic acid 85% (15.5 mmol) at ice bath temperature.

To a solution of CCl3C(O)NHP(O)Cl2 (1.7 mmol) in dry chloroform (30 ml), a solution of p-toluidine (6.8 mmol) in the same solvent (5 ml) was added at ice bath temperature. After 4 h stirring, the solvent was removed and the product was washed with distilled water and recrystallized from methanol at room temperature. IR (KBr, cm-1): 3305, 3248, 3029, 2920, 2858, 1714, 1619, 1514, 1433, 1376, 1277, 1234, 1191, 963, 882, 811, 730, 683.

Single crystals were obtained from a solution of the title compound in CH3OH after slow evaporation at room temperature.

Refinement top

All carbon bound H atoms were placed at calculated positions and were refined as riding with their Uiso set to either 1.2Ueq or 1.5Ueq (methyl) of the respective carrier atoms; in addition, the methyl H atoms were allowed to rotate about the C—C bond. Nitrogen bound H atoms were located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids shown at the 50% probability level.
[Figure 2] Fig. 2. Partial packing view showing the formation of a chain through NC(O)NHP(O)—H···O(C) and (N—H)2···O(P) hydrogen bonds along the c axis. The dashed lines show the donor···acceptor distances of the hydrogen bonds.
N,N'-Bis(4-methylphenyl)-N''-(2,2,2- trichloroacetyl)phosphoric triamide top
Crystal data top
C16H17Cl3N3O2PF(000) = 864
Mr = 420.65Dx = 1.502 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5060 reflections
a = 17.5151 (6) Åθ = 3.3–27.7°
b = 10.8638 (4) ŵ = 0.59 mm1
c = 9.8615 (3) ÅT = 120 K
β = 97.565 (3)°Prism, colourless
V = 1860.12 (11) Å30.60 × 0.60 × 0.60 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
3265 independent reflections
Radiation source: Enhance (Mo) X-ray Source2820 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Detector resolution: 8.4353 pixels mm-1θmax = 25.0°, θmin = 3.5°
ω scanh = 208
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 1212
Tmin = 0.955, Tmax = 1.000l = 1111
6796 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0371P)2 + 0.8844P]
where P = (Fo2 + 2Fc2)/3
3265 reflections(Δ/σ)max = 0.001
240 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C16H17Cl3N3O2PV = 1860.12 (11) Å3
Mr = 420.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.5151 (6) ŵ = 0.59 mm1
b = 10.8638 (4) ÅT = 120 K
c = 9.8615 (3) Å0.60 × 0.60 × 0.60 mm
β = 97.565 (3)°
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
3265 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2820 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 1.000Rint = 0.013
6796 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.33 e Å3
3265 reflectionsΔρmin = 0.26 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.42010 (3)0.60382 (4)0.43562 (4)0.02457 (13)
O10.14643 (7)0.76151 (12)0.35677 (12)0.0207 (3)
P10.17851 (3)0.74597 (4)0.50145 (4)0.01634 (12)
C10.12216 (10)0.51775 (18)0.53131 (17)0.0191 (4)
N10.13973 (9)0.63843 (15)0.58334 (15)0.0190 (3)
Cl20.46136 (3)0.60149 (5)0.72774 (4)0.02712 (13)
O20.30612 (7)0.68782 (12)0.72621 (12)0.0225 (3)
C20.07280 (11)0.5003 (2)0.41018 (18)0.0246 (4)
H20.05320.56920.35730.030*
N20.17663 (9)0.86377 (15)0.60406 (16)0.0187 (3)
Cl30.44563 (3)0.83378 (5)0.58356 (5)0.02685 (13)
C30.05233 (11)0.3820 (2)0.3671 (2)0.0287 (5)
H30.02000.37090.28290.034*
N30.27364 (9)0.71385 (15)0.49795 (15)0.0182 (3)
C40.07772 (11)0.2797 (2)0.4435 (2)0.0292 (5)
C50.12832 (12)0.2987 (2)0.5623 (2)0.0335 (5)
H50.14800.22980.61510.040*
C60.15074 (11)0.41629 (19)0.6055 (2)0.0276 (5)
H60.18590.42700.68650.033*
C70.22672 (10)0.96637 (17)0.60665 (17)0.0180 (4)
C80.25836 (11)1.00236 (18)0.49043 (18)0.0228 (4)
H80.24650.95820.40720.027*
C90.30726 (12)1.10297 (18)0.4972 (2)0.0258 (4)
H90.32961.12530.41800.031*
C100.32484 (11)1.17239 (18)0.61502 (19)0.0250 (4)
C110.29305 (12)1.13365 (19)0.7299 (2)0.0280 (5)
H110.30471.17810.81300.034*
C120.24498 (11)1.03244 (18)0.72679 (18)0.0237 (4)
H120.22441.00810.80720.028*
C130.05026 (13)0.1515 (2)0.4026 (3)0.0414 (6)
H13A0.08350.09080.45500.062*
H13B0.05230.13960.30470.062*
H13C0.00290.14100.42170.062*
C140.37295 (13)1.2873 (2)0.6172 (2)0.0350 (5)
H14A0.40401.29570.70690.052*
H14B0.33921.35900.59980.052*
H14C0.40711.28190.54620.052*
C150.32379 (10)0.69330 (17)0.61173 (17)0.0175 (4)
C160.40963 (10)0.68105 (17)0.58949 (17)0.0192 (4)
H1N0.1460 (12)0.6449 (19)0.662 (2)0.023 (6)*
H2N0.1638 (12)0.848 (2)0.672 (2)0.026 (6)*
H3N0.2878 (12)0.720 (2)0.430 (2)0.027 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0236 (2)0.0341 (3)0.0165 (2)0.0062 (2)0.00442 (17)0.00528 (19)
O10.0204 (6)0.0296 (7)0.0124 (6)0.0004 (6)0.0027 (5)0.0013 (5)
P10.0169 (2)0.0216 (3)0.0107 (2)0.0005 (2)0.00235 (17)0.00029 (18)
C10.0155 (9)0.0273 (10)0.0154 (8)0.0044 (8)0.0054 (7)0.0026 (8)
N10.0243 (8)0.0253 (9)0.0076 (7)0.0037 (7)0.0025 (6)0.0019 (7)
Cl20.0263 (3)0.0359 (3)0.0180 (2)0.0092 (2)0.00139 (18)0.00249 (19)
O20.0227 (7)0.0329 (8)0.0125 (6)0.0018 (6)0.0047 (5)0.0003 (5)
C20.0218 (10)0.0349 (12)0.0168 (9)0.0005 (9)0.0010 (7)0.0019 (8)
N20.0224 (8)0.0230 (9)0.0118 (7)0.0006 (7)0.0064 (6)0.0011 (7)
Cl30.0271 (3)0.0285 (3)0.0252 (2)0.0063 (2)0.00431 (19)0.00010 (19)
C30.0214 (10)0.0447 (13)0.0199 (10)0.0068 (10)0.0015 (8)0.0129 (9)
N30.0196 (8)0.0263 (9)0.0099 (8)0.0011 (7)0.0059 (6)0.0006 (6)
C40.0211 (10)0.0318 (12)0.0350 (11)0.0031 (9)0.0050 (8)0.0110 (9)
C50.0296 (11)0.0267 (11)0.0411 (12)0.0014 (10)0.0065 (9)0.0007 (10)
C60.0271 (11)0.0277 (11)0.0254 (10)0.0017 (9)0.0062 (8)0.0013 (8)
C70.0173 (9)0.0186 (9)0.0177 (9)0.0027 (8)0.0011 (7)0.0023 (7)
C80.0298 (10)0.0225 (10)0.0164 (9)0.0016 (9)0.0039 (7)0.0014 (8)
C90.0287 (10)0.0237 (11)0.0262 (10)0.0006 (9)0.0080 (8)0.0065 (8)
C100.0216 (10)0.0229 (10)0.0292 (10)0.0010 (8)0.0018 (8)0.0059 (8)
C110.0352 (11)0.0249 (11)0.0220 (10)0.0029 (9)0.0033 (8)0.0010 (8)
C120.0289 (10)0.0259 (10)0.0160 (9)0.0006 (9)0.0025 (7)0.0020 (8)
C130.0329 (12)0.0363 (13)0.0537 (15)0.0078 (11)0.0003 (11)0.0157 (11)
C140.0323 (12)0.0326 (12)0.0386 (12)0.0074 (10)0.0010 (9)0.0042 (10)
C150.0205 (9)0.0174 (9)0.0146 (9)0.0002 (8)0.0026 (7)0.0012 (7)
C160.0206 (9)0.0226 (10)0.0144 (9)0.0007 (8)0.0024 (7)0.0014 (7)
Geometric parameters (Å, º) top
Cl1—C161.7644 (18)C5—C61.387 (3)
O1—P11.4727 (12)C5—H50.9500
P1—N11.6195 (16)C6—H60.9500
P1—N21.6345 (16)C7—C121.386 (3)
P1—N31.7071 (16)C7—C81.393 (2)
C1—C61.380 (3)C8—C91.385 (3)
C1—C21.392 (2)C8—H80.9500
C1—N11.427 (2)C9—C101.385 (3)
N1—H1N0.77 (2)C9—H90.9500
Cl2—C161.7611 (18)C10—C111.392 (3)
O2—C151.211 (2)C10—C141.505 (3)
C2—C31.386 (3)C11—C121.383 (3)
C2—H20.9500C11—H110.9500
N2—C71.417 (2)C12—H120.9500
N2—H2N0.76 (2)C13—H13A0.9800
Cl3—C161.7786 (19)C13—H13B0.9800
C3—C41.383 (3)C13—H13C0.9800
C3—H30.9500C14—H14A0.9800
N3—C151.349 (2)C14—H14B0.9800
N3—H3N0.75 (2)C14—H14C0.9800
C4—C51.388 (3)C15—C161.553 (2)
C4—C131.510 (3)
O1—P1—N1115.74 (8)C9—C8—C7119.49 (18)
O1—P1—N2118.28 (8)C9—C8—H8120.3
N1—P1—N2102.25 (8)C7—C8—H8120.3
O1—P1—N3104.64 (7)C8—C9—C10122.55 (18)
N1—P1—N3109.71 (8)C8—C9—H9118.7
N2—P1—N3105.77 (8)C10—C9—H9118.7
C6—C1—C2119.16 (18)C9—C10—C11116.71 (18)
C6—C1—N1119.83 (16)C9—C10—C14121.72 (18)
C2—C1—N1120.91 (17)C11—C10—C14121.51 (18)
C1—N1—P1124.64 (12)C12—C11—C10122.02 (18)
C1—N1—H1N116.1 (16)C12—C11—H11119.0
P1—N1—H1N114.9 (16)C10—C11—H11119.0
C3—C2—C1119.68 (19)C11—C12—C7120.13 (17)
C3—C2—H2120.2C11—C12—H12119.9
C1—C2—H2120.2C7—C12—H12119.9
C7—N2—P1124.35 (12)C4—C13—H13A109.5
C7—N2—H2N114.8 (17)C4—C13—H13B109.5
P1—N2—H2N113.8 (17)H13A—C13—H13B109.5
C4—C3—C2121.81 (18)C4—C13—H13C109.5
C4—C3—H3119.1H13A—C13—H13C109.5
C2—C3—H3119.1H13B—C13—H13C109.5
C15—N3—P1123.18 (13)C10—C14—H14A109.5
C15—N3—H3N120.2 (17)C10—C14—H14B109.5
P1—N3—H3N116.2 (17)H14A—C14—H14B109.5
C3—C4—C5117.62 (19)C10—C14—H14C109.5
C3—C4—C13121.82 (19)H14A—C14—H14C109.5
C5—C4—C13120.5 (2)H14B—C14—H14C109.5
C6—C5—C4121.3 (2)O2—C15—N3124.41 (16)
C6—C5—H5119.3O2—C15—C16119.89 (15)
C4—C5—H5119.3N3—C15—C16115.66 (14)
C1—C6—C5120.31 (18)C15—C16—Cl2109.98 (12)
C1—C6—H6119.8C15—C16—Cl1111.97 (12)
C5—C6—H6119.8Cl2—C16—Cl1109.34 (10)
C12—C7—C8119.06 (17)C15—C16—Cl3106.17 (12)
C12—C7—N2119.70 (16)Cl2—C16—Cl3109.57 (10)
C8—C7—N2121.24 (16)Cl1—C16—Cl3109.75 (9)
C6—C1—N1—P1125.17 (17)P1—N2—C7—C12152.11 (15)
C2—C1—N1—P158.6 (2)P1—N2—C7—C827.7 (2)
O1—P1—N1—C144.72 (17)C12—C7—C8—C90.0 (3)
N2—P1—N1—C1174.73 (14)N2—C7—C8—C9179.82 (17)
N3—P1—N1—C173.35 (16)C7—C8—C9—C101.7 (3)
C6—C1—C2—C30.9 (3)C8—C9—C10—C112.3 (3)
N1—C1—C2—C3175.35 (16)C8—C9—C10—C14174.99 (19)
O1—P1—N2—C775.36 (16)C9—C10—C11—C121.3 (3)
N1—P1—N2—C7156.22 (14)C14—C10—C11—C12176.03 (19)
N3—P1—N2—C741.39 (16)C10—C11—C12—C70.3 (3)
C1—C2—C3—C42.0 (3)C8—C7—C12—C111.0 (3)
O1—P1—N3—C15179.94 (15)N2—C7—C12—C11179.19 (17)
N1—P1—N3—C1555.29 (17)P1—N3—C15—O24.8 (3)
N2—P1—N3—C1554.30 (17)P1—N3—C15—C16172.98 (13)
C2—C3—C4—C53.5 (3)O2—C15—C16—Cl223.4 (2)
C2—C3—C4—C13174.88 (19)N3—C15—C16—Cl2158.68 (14)
C3—C4—C5—C62.1 (3)O2—C15—C16—Cl1145.21 (15)
C13—C4—C5—C6176.3 (2)N3—C15—C16—Cl136.9 (2)
C2—C1—C6—C52.3 (3)O2—C15—C16—Cl395.03 (18)
N1—C1—C6—C5174.01 (18)N3—C15—C16—Cl382.86 (17)
C4—C5—C6—C10.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.77 (2)2.17 (2)2.8953 (19)156 (2)
N2—H2N···O1i0.76 (2)2.23 (2)2.948 (2)159 (2)
N3—H3N···O2ii0.75 (2)2.31 (2)3.008 (2)157 (2)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H17Cl3N3O2P
Mr420.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)17.5151 (6), 10.8638 (4), 9.8615 (3)
β (°) 97.565 (3)
V3)1860.12 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.60 × 0.60 × 0.60
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire2
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.955, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6796, 3265, 2820
Rint0.013
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.072, 1.04
No. of reflections3265
No. of parameters240
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.26

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.77 (2)2.17 (2)2.8953 (19)156 (2)
N2—H2N···O1i0.76 (2)2.23 (2)2.948 (2)159 (2)
N3—H3N···O2ii0.75 (2)2.31 (2)3.008 (2)157 (2)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.
 

Acknowledgements

Support of this investigation by the Islamic Azad University, North Tehran Branch, is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPourayoubi, M., Nečas, M. & Negari, M. (2012). Acta Cryst. C68, o51–o56.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265–o272.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds