metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Acetyl­acetonato-κ2O,O′)[(2-bromo­phen­yl)di­phenyl­phosphane-κP]carbonyl­rhodium(I)

aResearch Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za

(Received 10 February 2012; accepted 20 March 2012; online 24 March 2012)

In the title compound, [Rh(C5H7O2)(C18H14BrP)(CO)], the RhI atom adopts a slightly distorted square-planar geometry involving two O atoms [Rh—O = 2.077 (2) and 2.033 (2) Å] of the acetyl­acetonate ligand, one carbonyl C atom [Rh—C = 1.813 (2) Å] and one P atom [Rh—P = 2.242 (5) Å] of the PPh2(2-BrC6H4) phosphane ligand. Difference electron density maps indicate a disorder of the Br atom over two positions in an approximate 0.95:0.05 ratio. However, this disorder could not be resolved satisfactorily with the present data.

Related literature

For background to the catalytic activity of rhodium–phosphane compounds, see: Bonati & Wilkinson (1964[Bonati, F. & Wilkinson, G. (1964). J. Chem. Soc. pp. 3156-3160.]); Moloy & Wegman (1989[Moloy, K. G. & Wegman, R. W. (1989). Organometallics, 8, 2883-2892.]); Carraz et al. (2000[Carraz, C. A., Ditzel, E. J., Orpen, A. G., Ellis, D. D., Pringle, P. G. & Sunley, G. J. (2000). Chem. Commun. pp. 1277-1278.]). For related rhodium structures, see: Brink et al. (2007[Brink, A., Roodt, A. & Visser, H. G. (2007). Acta Cryst. E63, m2831-m2832.]); Coetzee et al. (2007[Coetzee, M., Purcell, W., Visser, H. G. & Venter, J. A. (2007). Acta Cryst. E63, m3165.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh(C5H7O2)(C18H14BrP)(CO)]

  • Mr = 571.19

  • Monoclinic, P 21 /n

  • a = 9.0503 (2) Å

  • b = 17.8711 (4) Å

  • c = 13.9552 (3) Å

  • β = 102.133 (1)°

  • V = 2206.68 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 9.26 mm−1

  • T = 100 K

  • 0.36 × 0.08 × 0.07 mm

Data collection
  • Bruker APEX DUO 4K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.410, Tmax = 0.753

  • 51955 measured reflections

  • 3830 independent reflections

  • 3800 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.047

  • S = 1.14

  • 3830 reflections

  • 283 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Acetylacetonate has two O-donor atoms with equivalent σ-electron donor capabilities. The labile carbonyl groups in dicarbonyl(acetylacetonate) rhodium(I) complexes promotes easy carbonyl displacement of one carbonyl group with a variety of phosphanes, phosphites or arsines (Bonati and Wilkinson, 1964). This work is part of an on-going investigation aimed at determining the steric effects induced by various phosphane ligands on a rhodium(I) metal centre. Previous work illustrating the catalytic importance of the rhodium(I) square- planar moieties has been conducted on rhodium mono- and di-phosphane complexes containing the symmetrical bi-dentate ligand acac (acac = acetylacetonate) (Moloy and Wegman, 1989). Symmetrical di-phosphane ligands result in the production of acetaldehyde, whereas unsymmetrical di-phosphane ligands are more stable and efficient catalysts for the carbonylation of methanol to acetic acid (Carraz et al., 2000).

In the title compound, [Rh(acac)(CO){PPh2(2-BrC6H4)}] (acac = acetylacetonate, Ph = phenyl), the coordination around the Rh atom shows a slightly distorted square-planar arrangement, illustrated by C1—Rh1—P1 and O2—Rh1—O3 angles of 86.99 (6)° and 89.10 (6)°, respectively. The complex crystallizes in the monoclinic space group, P2(1)/n, with four molecules in the unit cell. A larger trans-influence of the phosphane ligand with respect to the carbonyl ligand is indicated by the longer Rh—O2 (2.077 (2) Å) bond compared to Rh—O3 (2.033 (2) Å) bond which is trans to the carbonyl ligand. The steric demand of the phosphane is indicated by the smaller O3—Rh1—P1 angle, (90.52 (4)°), compared to the carbonyl ligand (O2—Rh1—C1 = 93.38 (7)°). All geometric parameters are similar to previous reported complexes of the general formula [Rh(acac)(CO)L]; L = tertiary phosphane ligand (Brink et al. (2007); Coetzee et al. (2007).

We modelled the position of the Br atom as a disordered model of 95:5 occupancy over two positions. A chemically more acceptable solution is the modelling of the complete ring C21—C26 as disordered over two positions. This resulted unfortunately in an unstable refinement.

Related literature top

For background to the catalytic activity of rhodium-phosphane compounds, see: Bonati & Wilkinson (1964); Moloy & Wegman (1989); Carraz et al. (2000). For related rhodium structures, see: Brink et al. (2007); Coetzee et al. (2007).

Experimental top

A solution of [Rh(acac)(CO)2] (42.2 mg, 0.16 mmol) in acetone (5 ml) was added slowly to a solution of [PPh2(2-BrC6H4)] (61.4 mg, 0.18 mmol) in acetone (5 ml). Slow evaporation of the solvent afforded the title compound as yellow crystals. Spectroscopic analysis: 31P{H} NMR (CDCl3, 162 MHz, p.p.m.): 52.4 [d, 1J(Rh—P) = 179.8 Hz]; IR (CH2Cl2) ν(CO): 1975.1 cm-1.

Refinement top

The aromatic, methine, and methyl H atoms were placed in geometrically idealized positions (C—H = 0.95–0.98) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for aromatic and methine H atoms, and Uiso(H) = 1.5Ueq(C) for methyl H atoms respectively. Methyl torsion angles were refined from electron density. The Br atom was modelled disorderd over two positions in a 95:5 ratio. This resulted in an unacceptably short C26—Br1B distance of 1.657 Å for the minor component.

Applying a distance restraint (SADI or DFIX in SHELXL) to the minor C26—Br1B component resulted in a severe distortion of the phenyl ring. In addition, this resulted in an unstable refinement.

Modelling the complete ring (C21—C26, Br1B) as disorderd over two positions resulted in a 96:4 ratio. This disorder provides a chemically acceptable explanation of the low occupancy of the minor disorder, as it results in distortion of the P coordination sphere. This behaviour is, however, expected in solution at room temperature. Unfortunately modelling the complete ring as a disorder resulted in an unstable refinement (results file in the supplementary information at the end of the cif file).

Structure description top

Acetylacetonate has two O-donor atoms with equivalent σ-electron donor capabilities. The labile carbonyl groups in dicarbonyl(acetylacetonate) rhodium(I) complexes promotes easy carbonyl displacement of one carbonyl group with a variety of phosphanes, phosphites or arsines (Bonati and Wilkinson, 1964). This work is part of an on-going investigation aimed at determining the steric effects induced by various phosphane ligands on a rhodium(I) metal centre. Previous work illustrating the catalytic importance of the rhodium(I) square- planar moieties has been conducted on rhodium mono- and di-phosphane complexes containing the symmetrical bi-dentate ligand acac (acac = acetylacetonate) (Moloy and Wegman, 1989). Symmetrical di-phosphane ligands result in the production of acetaldehyde, whereas unsymmetrical di-phosphane ligands are more stable and efficient catalysts for the carbonylation of methanol to acetic acid (Carraz et al., 2000).

In the title compound, [Rh(acac)(CO){PPh2(2-BrC6H4)}] (acac = acetylacetonate, Ph = phenyl), the coordination around the Rh atom shows a slightly distorted square-planar arrangement, illustrated by C1—Rh1—P1 and O2—Rh1—O3 angles of 86.99 (6)° and 89.10 (6)°, respectively. The complex crystallizes in the monoclinic space group, P2(1)/n, with four molecules in the unit cell. A larger trans-influence of the phosphane ligand with respect to the carbonyl ligand is indicated by the longer Rh—O2 (2.077 (2) Å) bond compared to Rh—O3 (2.033 (2) Å) bond which is trans to the carbonyl ligand. The steric demand of the phosphane is indicated by the smaller O3—Rh1—P1 angle, (90.52 (4)°), compared to the carbonyl ligand (O2—Rh1—C1 = 93.38 (7)°). All geometric parameters are similar to previous reported complexes of the general formula [Rh(acac)(CO)L]; L = tertiary phosphane ligand (Brink et al. (2007); Coetzee et al. (2007).

We modelled the position of the Br atom as a disordered model of 95:5 occupancy over two positions. A chemically more acceptable solution is the modelling of the complete ring C21—C26 as disordered over two positions. This resulted unfortunately in an unstable refinement.

For background to the catalytic activity of rhodium-phosphane compounds, see: Bonati & Wilkinson (1964); Moloy & Wegman (1989); Carraz et al. (2000). For related rhodium structures, see: Brink et al. (2007); Coetzee et al. (2007).

Computing details top

Data collection: APEX2 (Bruker 2010); cell refinement: SAINT (Bruker 2008); data reduction: SAINT and XPREP (Bruker 2008); program(s) used to solve structure: SIR97 (Altomare, et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom numbering system. Displacement ellipsoids are drawn at the 50% probability level. For the C atoms in rings; the first digit indicates ring number and the second digit indicates the position of the atom in the ring. Only the highest occupancy for the disorder on the Br position is shown.
[Figure 2] Fig. 2. The structure of the disordered phenyl ring in (Acetylacetonato- κ2O,O')carbonyl[(2-bromophenyl)diphenyl]phosphaneκP)rhodium(I), with the minor disordered atoms with lower occupancy shown in blue.
(Acetylacetonato-κ2O,O')[(2-bromophenyl)diphenylphosphane- κP]carbonylrhodium(I) top
Crystal data top
[Rh(C5H7O2)(C18H14BrP)(CO)]F(000) = 1136
Mr = 571.19Dx = 1.719 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 9726 reflections
a = 9.0503 (2) Åθ = 4.1–65.7°
b = 17.8711 (4) ŵ = 9.26 mm1
c = 13.9552 (3) ÅT = 100 K
β = 102.133 (1)°Needle, yellow
V = 2206.68 (8) Å30.36 × 0.08 × 0.07 mm
Z = 4
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
3830 independent reflections
Radiation source: Incoatec IµS microfocus X-ray source3800 reflections with I > 2σ(I)
Incoatec Quazar Multilayer Mirror monochromatorRint = 0.040
Detector resolution: 8.4 pixels mm-1θmax = 66.6°, θmin = 4.1°
φ and ω scansh = 810
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 2121
Tmin = 0.410, Tmax = 0.753l = 1616
51955 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0153P)2 + 2.7465P]
where P = (Fo2 + 2Fc2)/3
3830 reflections(Δ/σ)max = 0.001
283 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Rh(C5H7O2)(C18H14BrP)(CO)]V = 2206.68 (8) Å3
Mr = 571.19Z = 4
Monoclinic, P21/nCu Kα radiation
a = 9.0503 (2) ŵ = 9.26 mm1
b = 17.8711 (4) ÅT = 100 K
c = 13.9552 (3) Å0.36 × 0.08 × 0.07 mm
β = 102.133 (1)°
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
3830 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3800 reflections with I > 2σ(I)
Tmin = 0.410, Tmax = 0.753Rint = 0.040
51955 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.047H-atom parameters constrained
S = 1.14Δρmax = 0.35 e Å3
3830 reflectionsΔρmin = 0.47 e Å3
283 parameters
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 10 s/frame. A total of 3977 frames were collected with a frame width of 1.5° covering up to θ = 66.56° with 98.4% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.0083 (2)0.20914 (12)0.81292 (15)0.0170 (4)
C20.7672 (3)0.02131 (12)0.96498 (16)0.0202 (5)
C30.7635 (3)0.07346 (13)1.03843 (16)0.0227 (5)
H30.71450.05891.08940.027*
C40.8256 (3)0.14521 (13)1.04395 (16)0.0199 (5)
C50.7048 (3)0.05622 (13)0.97335 (18)0.0270 (5)
H5A0.67120.07760.90770.041*
H5B0.6190.05331.00590.041*
H5C0.78370.0881.01180.041*
C60.8164 (3)0.19327 (13)1.13130 (17)0.0250 (5)
H6A0.8020.24571.11070.038*
H6B0.91030.18841.18080.038*
H6C0.73090.1771.15910.038*
C110.9193 (2)0.13799 (11)0.60948 (15)0.0141 (4)
C130.7662 (3)0.23761 (13)0.51864 (17)0.0227 (5)
H130.67680.2670.50690.027*
C140.8773 (3)0.24911 (14)0.46495 (17)0.0286 (5)
H140.86430.28740.41660.034*
C151.0060 (3)0.20565 (13)0.48098 (17)0.0244 (5)
H151.08030.21340.4430.029*
C161.0269 (3)0.15034 (12)0.55286 (15)0.0178 (4)
H161.11590.12060.56350.021*
C210.8375 (2)0.00862 (11)0.66851 (15)0.0144 (4)
C220.7422 (2)0.00895 (12)0.57576 (15)0.0162 (4)
H220.7350.03430.53540.019*
C230.6576 (2)0.07239 (12)0.54206 (16)0.0193 (5)
H230.59250.07210.4790.023*
C240.6680 (3)0.13580 (12)0.60010 (18)0.0220 (5)
H240.6110.17920.57680.026*
C250.7624 (3)0.13577 (12)0.69277 (17)0.0208 (5)
H250.76930.17920.73270.025*
C311.1460 (2)0.03819 (11)0.71559 (14)0.0138 (4)
C321.2678 (3)0.07878 (12)0.76843 (16)0.0195 (5)
H321.24960.12370.80050.023*
C331.4153 (3)0.05460 (14)0.77495 (17)0.0234 (5)
H331.49720.08310.81080.028*
C341.4428 (3)0.01132 (14)0.72896 (16)0.0232 (5)
H341.54360.02810.73330.028*
C351.3233 (3)0.05247 (13)0.67696 (16)0.0207 (5)
H351.34210.09780.6460.025*
C361.1750 (2)0.02778 (12)0.66963 (15)0.0171 (4)
H361.09340.05610.63310.021*
O11.05924 (19)0.26162 (9)0.78518 (12)0.0240 (4)
O20.89331 (18)0.17500 (8)0.98188 (11)0.0203 (3)
O30.82285 (18)0.03145 (8)0.88916 (11)0.0212 (3)
P10.95457 (6)0.07227 (3)0.71283 (4)0.01194 (11)
Rh10.923488 (17)0.125849 (8)0.852474 (11)0.01343 (6)
C120.7890 (2)0.18222 (12)0.58970 (15)0.0168 (4)
H120.71320.1740.62640.02*0.0419 (10)
C260.8466 (2)0.07255 (12)0.72724 (16)0.0177 (4)
H260.91040.07280.79070.021*0.9581 (10)
Br1A0.63052 (3)0.167185 (13)0.657862 (17)0.01941 (8)0.9581 (10)
Br1B0.9534 (7)0.0921 (3)0.8361 (4)0.0277 (19)0.0419 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0196 (11)0.0181 (11)0.0135 (10)0.0018 (9)0.0037 (9)0.0061 (8)
C20.0208 (12)0.0209 (11)0.0186 (11)0.0004 (9)0.0034 (9)0.0040 (9)
C30.0295 (13)0.0242 (12)0.0171 (11)0.0035 (10)0.0112 (10)0.0021 (9)
C40.0214 (12)0.0215 (11)0.0174 (11)0.0032 (9)0.0055 (9)0.0012 (9)
C50.0350 (14)0.0226 (12)0.0241 (12)0.0064 (10)0.0076 (10)0.0027 (10)
C60.0302 (13)0.0253 (12)0.0220 (12)0.0002 (10)0.0111 (10)0.0023 (10)
C110.0189 (11)0.0104 (9)0.0115 (10)0.0014 (8)0.0003 (8)0.0020 (8)
C130.0247 (12)0.0188 (11)0.0217 (11)0.0052 (9)0.0017 (9)0.0025 (9)
C140.0395 (15)0.0232 (12)0.0214 (12)0.0050 (11)0.0024 (11)0.0094 (10)
C150.0316 (13)0.0244 (12)0.0188 (11)0.0014 (10)0.0087 (10)0.0055 (9)
C160.0216 (11)0.0152 (10)0.0166 (10)0.0018 (9)0.0038 (9)0.0002 (8)
C210.0143 (10)0.0131 (10)0.0170 (10)0.0017 (8)0.0059 (8)0.0024 (8)
C220.0173 (11)0.0160 (10)0.0160 (10)0.0007 (8)0.0051 (8)0.0016 (8)
C230.0174 (11)0.0220 (11)0.0191 (11)0.0029 (9)0.0051 (9)0.0061 (9)
C240.0224 (12)0.0162 (11)0.0299 (13)0.0052 (9)0.0114 (10)0.0092 (9)
C250.0241 (12)0.0139 (10)0.0271 (12)0.0004 (9)0.0114 (10)0.0021 (9)
C310.0145 (10)0.0161 (10)0.0109 (9)0.0009 (8)0.0029 (8)0.0036 (8)
C320.0207 (11)0.0193 (11)0.0187 (11)0.0001 (9)0.0043 (9)0.0022 (9)
C330.0159 (11)0.0323 (13)0.0212 (11)0.0021 (9)0.0019 (9)0.0010 (10)
C340.0185 (12)0.0310 (13)0.0217 (11)0.0077 (10)0.0079 (9)0.0077 (10)
C350.0245 (12)0.0204 (11)0.0190 (11)0.0062 (9)0.0090 (9)0.0017 (9)
C360.0192 (11)0.0165 (10)0.0161 (10)0.0010 (8)0.0050 (9)0.0014 (8)
O10.0326 (9)0.0166 (8)0.0248 (8)0.0069 (7)0.0108 (7)0.0023 (6)
O20.0281 (9)0.0176 (8)0.0175 (8)0.0026 (6)0.0102 (7)0.0018 (6)
O30.0287 (9)0.0183 (8)0.0185 (8)0.0041 (6)0.0093 (7)0.0006 (6)
P10.0134 (3)0.0107 (2)0.0116 (2)0.00022 (19)0.00232 (19)0.00053 (19)
Rh10.01719 (10)0.01174 (9)0.01218 (9)0.00084 (6)0.00498 (6)0.00096 (5)
C120.0184 (11)0.0146 (10)0.0162 (10)0.0007 (8)0.0012 (8)0.0034 (8)
C260.0177 (11)0.0168 (11)0.0190 (11)0.0033 (8)0.0052 (9)0.0002 (8)
Br1A0.01406 (13)0.02069 (13)0.02271 (14)0.00198 (9)0.00212 (9)0.00344 (9)
Br1B0.028 (3)0.027 (3)0.023 (3)0.003 (2)0.004 (2)0.005 (2)
Geometric parameters (Å, º) top
C1—O11.148 (3)C21—C261.398 (3)
C1—Rh11.813 (2)C21—P11.822 (2)
C2—O31.277 (3)C22—C231.393 (3)
C2—C31.391 (3)C22—H220.95
C2—C51.510 (3)C23—C241.384 (3)
C3—C41.395 (3)C23—H230.95
C3—H30.95C24—C251.392 (3)
C4—O21.278 (3)C24—H240.95
C4—C61.508 (3)C25—C261.391 (3)
C5—H5A0.98C25—H250.95
C5—H5B0.98C31—C361.393 (3)
C5—H5C0.98C31—C321.394 (3)
C6—H6A0.98C31—P11.829 (2)
C6—H6B0.98C32—C331.387 (3)
C6—H6C0.98C32—H320.95
C11—C161.395 (3)C33—C341.389 (3)
C11—C121.398 (3)C33—H330.95
C11—P11.835 (2)C34—C351.381 (3)
C13—C121.386 (3)C34—H340.95
C13—C141.389 (4)C35—C361.396 (3)
C13—H130.95C35—H350.95
C14—C151.379 (4)C36—H360.95
C14—H140.95O2—Rh12.0772 (15)
C15—C161.393 (3)O3—Rh12.0332 (15)
C15—H150.95P1—Rh12.2415 (5)
C16—H160.95C12—H120.95
C21—C221.397 (3)C26—H260.95
O1—C1—Rh1177.96 (19)C22—C23—H23119.9
O3—C2—C3126.2 (2)C23—C24—C25119.8 (2)
O3—C2—C5114.4 (2)C23—C24—H24120.1
C3—C2—C5119.4 (2)C25—C24—H24120.1
C2—C3—C4125.8 (2)C26—C25—C24120.4 (2)
C2—C3—H3117.1C26—C25—H25119.8
C4—C3—H3117.1C24—C25—H25119.8
O2—C4—C3126.2 (2)C36—C31—C32118.6 (2)
O2—C4—C6115.2 (2)C36—C31—P1122.77 (16)
C3—C4—C6118.6 (2)C32—C31—P1118.58 (16)
C2—C5—H5A109.5C33—C32—C31121.0 (2)
C2—C5—H5B109.5C33—C32—H32119.5
H5A—C5—H5B109.5C31—C32—H32119.5
C2—C5—H5C109.5C32—C33—C34119.8 (2)
H5A—C5—H5C109.5C32—C33—H33120.1
H5B—C5—H5C109.5C34—C33—H33120.1
C4—C6—H6A109.5C35—C34—C33119.8 (2)
C4—C6—H6B109.5C35—C34—H34120.1
H6A—C6—H6B109.5C33—C34—H34120.1
C4—C6—H6C109.5C34—C35—C36120.3 (2)
H6A—C6—H6C109.5C34—C35—H35119.8
H6B—C6—H6C109.5C36—C35—H35119.8
C16—C11—C12117.34 (19)C31—C36—C35120.3 (2)
C16—C11—P1121.29 (16)C31—C36—H36119.8
C12—C11—P1121.15 (16)C35—C36—H36119.8
C12—C13—C14118.4 (2)C4—O2—Rh1125.64 (14)
C12—C13—H13120.8C2—O3—Rh1127.02 (14)
C14—C13—H13120.8C21—P1—C31102.92 (9)
C15—C14—C13120.8 (2)C21—P1—C11104.38 (9)
C15—C14—H14119.6C31—P1—C11103.73 (10)
C13—C14—H14119.6C21—P1—Rh1117.63 (7)
C14—C15—C16119.9 (2)C31—P1—Rh1114.54 (7)
C14—C15—H15120C11—P1—Rh1112.14 (7)
C16—C15—H15120C1—Rh1—O3176.91 (8)
C15—C16—C11121.0 (2)C1—Rh1—O293.38 (7)
C15—C16—H16119.5O3—Rh1—O289.10 (6)
C11—C16—H16119.5C1—Rh1—P186.99 (6)
C22—C21—C26119.26 (19)O3—Rh1—P190.52 (4)
C22—C21—P1121.32 (16)O2—Rh1—P1179.58 (5)
C26—C21—P1119.39 (16)C13—C12—C11122.5 (2)
C23—C22—C21120.3 (2)C13—C12—H12118.7
C23—C22—H22119.8C11—C12—H12118.7
C21—C22—H22119.8C25—C26—C21120.0 (2)
C24—C23—C22120.2 (2)C25—C26—H26120
C24—C23—H23119.9C21—C26—H26120

Experimental details

Crystal data
Chemical formula[Rh(C5H7O2)(C18H14BrP)(CO)]
Mr571.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.0503 (2), 17.8711 (4), 13.9552 (3)
β (°) 102.133 (1)
V3)2206.68 (8)
Z4
Radiation typeCu Kα
µ (mm1)9.26
Crystal size (mm)0.36 × 0.08 × 0.07
Data collection
DiffractometerBruker APEX DUO 4K CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.410, 0.753
No. of measured, independent and
observed [I > 2σ(I)] reflections
51955, 3830, 3800
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.047, 1.14
No. of reflections3830
No. of parameters283
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.47

Computer programs: APEX2 (Bruker 2010), SAINT (Bruker 2008), SAINT and XPREP (Bruker 2008), SIR97 (Altomare, et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010) and WinGX (Farrugia, 1999).

 

Acknowledgements

Financial assistance from the Research Fund of the University of Johannesburg, Sasol and TESP is gratefully acknowledged. H. Ogutu is acknowledged for the data collection.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBonati, F. & Wilkinson, G. (1964). J. Chem. Soc. pp. 3156–3160.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrink, A., Roodt, A. & Visser, H. G. (2007). Acta Cryst. E63, m2831–m2832.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarraz, C. A., Ditzel, E. J., Orpen, A. G., Ellis, D. D., Pringle, P. G. & Sunley, G. J. (2000). Chem. Commun. pp. 1277–1278.  Web of Science CSD CrossRef Google Scholar
First citationCoetzee, M., Purcell, W., Visser, H. G. & Venter, J. A. (2007). Acta Cryst. E63, m3165.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMoloy, K. G. & Wegman, R. W. (1989). Organometallics, 8, 2883–2892.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds