organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[1,3-Diazinane-1,3-diylbis(methyl­ene)]bis­­(4-bromo­phenol)

aDepartamento de Química, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, Colombia, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 10 January 2012; accepted 16 January 2012; online 21 January 2012)

The title compound, C18H20Br2N2O2, the heterocyclic ring adopts a chair conformation. The benzene rings make dihedral angles of 86.84 (10) and 60.73 (10)° with the mean plane of the heterocyclic ring. The dihedral angle between the two benzene rings is 79.77 (10)°. The mol­ecular structure is stabilized by two intra­molecular hydrogen bonds between the phenolic hy­droxy groups and N atoms with graph-set motif S(6). The crystal structure is stabilized by weak C—H⋯π inter­actions.

Related literature

For related structures, see: Rivera et al. (2012[Rivera, A., González, D. M., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012). Acta Cryst. E68, o191-o192.], 2011[Rivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011). Acta Cryst. E67, o753.]). For the synthesis of the precursor, see: Rivera et al. (2010[Rivera, A., Ríos-Motta, J., Dušek, M. & Jarošová, M. (2010). Acta Cryst. C66, o222-o224.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For Cremer–Pople puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20Br2N2O2

  • Mr = 456.2

  • Orthorhombic, P 21 21 21

  • a = 5.9602 (3) Å

  • b = 17.2164 (8) Å

  • c = 17.7222 (8) Å

  • V = 1818.53 (15) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 5.76 mm−1

  • T = 120 K

  • 0.35 × 0.09 × 0.03 mm

Data collection
  • Agilent Xcalibur with an Atlas (Gemini ultra Cu) detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.63, Tmax = 1

  • 14453 measured reflections

  • 3221 independent reflections

  • 3014 reflections with I > 3σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.056

  • S = 1.37

  • 3221 reflections

  • 225 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1894 Friedel pairs

  • Flack parameter: 0.148 (19)

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C6–C11 aromatic ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯N1 0.85 (3) 1.87 (3) 2.634 (3) 148 (3)
O2—H2o⋯N2 0.85 (3) 1.92 (3) 2.654 (3) 144 (3)
C11—H11⋯Cg2i 0.96 2.96 3.632 (2) 128
Symmetry code: (i) [-x-1, y+{\script{1\over 2}}, -z+{\script{5\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

In our group, research has been focused on the synthesis of ortho-Mannich bases and their structure, properties, and hydrogen-bonded properties. Very recently we reported the molecular structure of 2,2'-(dihydropyrimidine-1,3(2H, 4H)-diyldimethanediyl)bis-(6-tertbutyl-4-methoxyphenol) a novel di-Mannich base (Rivera, et al. 2012). Unlike related structure, the title compound crystallizes in an orthorhombic chiral P212121 space group. The molecular structure and atom-numbering scheme for (I) are shown in Fig. 1. In the crystal structure of the title compound (I), the hexahydropyrimidine ring adopts a chair conformation with a diequatorial substitution (Cremer & Pople, 1975) with puckering parameters Q, θ and ϕ of 0.591 (3) Å, 175.1 (3)°, 225 (3)°. The benzene rings makes an angle of 86.84 (10)° and 60.73 (10)° with the mean plane of heterocyclic ring defined by N1, C2, C4 and N2 atoms. The dihedral angle between the two benzene rings is 79.77 (10)°. In the molecule of the title compound , Fig. 1 bond lengths (Allen et al., 1987) and angles are normal and comparable to the related structure (Rivera, et al. 2012).

There are two intramolecular hydrogen bonds between the phenolic hydroxy groups and nitrogen atoms with graph-set motif S(6) (Bernstein et al., 1995). The shorter H—O distance [0.85 (3) Å] in comparison with the related structure (Rivera, et al. 2012), indicates a decreasing hydrogen-bonding strength, which is confirmed by the N···H and the N···O distances (Table 1). However, the observed C—O bond lengths [C7—O1 (1.355 (4) Å) and C14—O2 (1.365 (3) Å)] are shorter by 0.021 Å and 0.011 Å indicating a tendency to form a quinoid-type structure. Though, these C—O bond lengths are in good agreement with other related structure where the p-substituents in the aromatic ring is bromide [1.353 (2) Å] (Rivera, et al. 2011). We concluded that the bromine substituents do not induce considerably increase in hydrogen-bonding strength despite the contribution of this halogen atom in a quinoid structure by electron deslocalization.The crystal structure is stabilized by weak C—H···π interactions.

Related literature top

For related structures, see: Rivera et al. (2012, 2011). For the synthesis of the precursor, see: Rivera et al. (2010). For bond-length data, see: Allen et al. (1987). For Cremer–Pople puckering parameters, see: Cremer & Pople (1975). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A solution of 1,3,7,9,13,15,19,21-octaazapentacyclo[19.3.1.13,7.19,13.115,19]octacosane prepared according to a previous report (Rivera et al., 2010) (200 mg, 0.54 mmol) in 96% ethanol (5 ml) was added slowly to a stirred solution of p-bromophenol (380 mg, 2.2 mmol) in 96% ethanol (5 ml) that was heated under reflux. Upon completion of the addition, the reaction mixture was stirred under reflux for 14 h. Next, the reflux was stopped, the solvent was removed on a rotary evaporator under vacuum, and the residue obtained was chromatographed on silica gel eluting with benzene/AcOEt (gradient elution with 5% to 20% AcOEt) to produce a solid which was recrystallized in 96% ethanol to provide high quality crystals of the title compound (I), (Yield 31.4%, m.p. 433–434 K)

Refinement top

The hydroxy hydrogen atoms were found in difference Fourier maps and their coordinates were refined with a distance restraint d(O—H) = 0.85 Å with σ 0.03 Å.

All other H atoms atoms were positioned geometrically and treated as riding on their parent atoms. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as 1.2×Ueq(C,O) of the parent atom .

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. A view of the title molecule. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as small spheres of arbitrary radii and hydrogen bonds are indicated by dashed lines.
2,2'-[1,3-Diazinane-1,3-diylbis(methylene)]bis(4-bromophenol) top
Crystal data top
C18H20Br2N2O2F(000) = 912
Mr = 456.2Dx = 1.666 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.5418 Å
Hall symbol: P 2ac 2abCell parameters from 8581 reflections
a = 5.9602 (3) Åθ = 3.6–67.0°
b = 17.2164 (8) ŵ = 5.76 mm1
c = 17.7222 (8) ÅT = 120 K
V = 1818.53 (15) Å3Plate, colourless
Z = 40.35 × 0.09 × 0.03 mm
Data collection top
Agilent Xcalibur with an Atlas (Gemini ultra Cu) detector
diffractometer
3221 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source3014 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 10.3784 pixels mm-1θmax = 67.2°, θmin = 3.6°
Rotation method data acquisition using ω scansh = 76
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 2020
Tmin = 0.63, Tmax = 1l = 2120
14453 measured reflections
Refinement top
Refinement on F2Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
R[F2 > 2σ(F2)] = 0.023(Δ/σ)max = 0.009
wR(F2) = 0.056Δρmax = 0.27 e Å3
S = 1.37Δρmin = 0.34 e Å3
3221 reflectionsExtinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
225 parametersExtinction coefficient: 360 (70)
2 restraintsAbsolute structure: Flack (1983), 1894 Friedel pairs
74 constraintsAbsolute structure parameter: 0.148 (19)
H atoms treated by a mixture of independent and constrained refinement
Crystal data top
C18H20Br2N2O2V = 1818.53 (15) Å3
Mr = 456.2Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 5.9602 (3) ŵ = 5.76 mm1
b = 17.2164 (8) ÅT = 120 K
c = 17.7222 (8) Å0.35 × 0.09 × 0.03 mm
Data collection top
Agilent Xcalibur with an Atlas (Gemini ultra Cu) detector
diffractometer
3221 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3014 reflections with I > 3σ(I)
Tmin = 0.63, Tmax = 1Rint = 0.034
14453 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056Δρmax = 0.27 e Å3
S = 1.37Δρmin = 0.34 e Å3
3221 reflectionsAbsolute structure: Flack (1983), 1894 Friedel pairs
225 parametersAbsolute structure parameter: 0.148 (19)
2 restraints
Special details top

Experimental. CrysAlisPro (Agilent, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.51306 (8)0.332316 (17)1.176266 (16)0.04042 (10)
Br20.49477 (6)0.037552 (13)0.485209 (15)0.03305 (8)
O10.9595 (3)0.38094 (11)0.87498 (12)0.0318 (6)
O20.9653 (3)0.28722 (12)0.66366 (12)0.0326 (6)
N10.5696 (3)0.35867 (12)0.80850 (13)0.0223 (6)
N20.5782 (4)0.36259 (13)0.67419 (14)0.0260 (7)
C10.4884 (6)0.32162 (12)0.74006 (13)0.0251 (7)
C20.4815 (6)0.43895 (13)0.81379 (15)0.0275 (7)
C30.5591 (5)0.48430 (15)0.74549 (19)0.0342 (10)
C40.4950 (7)0.44293 (13)0.67271 (15)0.0339 (8)
C50.5110 (6)0.31139 (12)0.87501 (13)0.0224 (6)
C60.6347 (4)0.33698 (14)0.94497 (16)0.0214 (7)
C70.8526 (4)0.36921 (14)0.94151 (17)0.0251 (8)
C80.9639 (4)0.38989 (13)1.00746 (17)0.0275 (8)
C90.8650 (5)0.37837 (14)1.07713 (18)0.0294 (9)
C100.6495 (5)0.34704 (14)1.08040 (17)0.0264 (8)
C110.5363 (4)0.32626 (13)1.01568 (15)0.0235 (7)
C120.5203 (6)0.32261 (13)0.60354 (14)0.0269 (7)
C130.6347 (4)0.24464 (16)0.59565 (16)0.0246 (8)
C140.8500 (4)0.23092 (16)0.62571 (16)0.0260 (8)
C150.9503 (4)0.15865 (16)0.61723 (16)0.0284 (8)
C160.8460 (5)0.10008 (17)0.57645 (17)0.0286 (8)
C170.6373 (5)0.11513 (16)0.54497 (16)0.0276 (8)
C180.5310 (5)0.18583 (14)0.55486 (14)0.0243 (7)
H1a0.3274690.3235350.739030.0301*
H1b0.5371310.2684770.739040.0301*
H2a0.5379220.4631410.8587610.0329*
H2b0.3205440.4376310.8148560.0329*
H3a0.4925480.535070.7461970.041*
H3b0.7190010.4906580.7474520.041*
H4a0.3346380.4426630.6675240.0406*
H4b0.5594410.4698610.630530.0406*
H5a0.5440720.2578050.8649320.0269*
H5b0.3523060.3143360.8837680.0269*
H81.1110070.4124161.0045890.033*
H90.9436040.391751.1225990.0352*
H110.3886660.3042521.019250.0282*
H12a0.5595370.3549590.5614350.0322*
H12b0.3606790.3157740.600790.0322*
H151.0938830.1490640.6399220.0341*
H160.9165220.0503650.5701660.0343*
H180.3850150.1942730.5334720.0292*
H1o0.868 (5)0.370 (2)0.8398 (15)0.0382*
H2o0.884 (5)0.3266 (14)0.672 (2)0.0391*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0547 (2)0.04237 (16)0.02419 (15)0.0043 (2)0.00098 (18)0.00131 (11)
Br20.04040 (16)0.02472 (13)0.03402 (15)0.00507 (16)0.00497 (17)0.00090 (10)
O10.0236 (11)0.0369 (9)0.0350 (11)0.0063 (8)0.0030 (8)0.0000 (8)
O20.0303 (11)0.0359 (9)0.0316 (10)0.0076 (9)0.0048 (9)0.0044 (8)
N10.0264 (12)0.0177 (9)0.0227 (11)0.0022 (7)0.0022 (8)0.0027 (9)
N20.0349 (12)0.0187 (10)0.0243 (12)0.0034 (8)0.0010 (9)0.0019 (9)
C10.0291 (13)0.0211 (10)0.0250 (12)0.0045 (14)0.0021 (14)0.0024 (9)
C20.0328 (13)0.0193 (10)0.0303 (13)0.0024 (12)0.0017 (15)0.0003 (9)
C30.049 (2)0.0172 (11)0.0367 (17)0.0016 (11)0.0032 (13)0.0024 (11)
C40.0483 (15)0.0235 (11)0.0298 (13)0.0023 (16)0.0057 (19)0.0069 (9)
C50.0221 (12)0.0196 (9)0.0256 (11)0.0050 (13)0.0029 (14)0.0017 (8)
C60.0202 (12)0.0159 (11)0.0281 (14)0.0005 (10)0.0020 (10)0.0021 (10)
C70.0229 (13)0.0173 (11)0.0351 (16)0.0026 (10)0.0018 (11)0.0034 (11)
C80.0233 (14)0.0170 (10)0.0421 (15)0.0023 (10)0.0081 (12)0.0035 (10)
C90.0354 (15)0.0160 (12)0.0366 (17)0.0013 (11)0.0112 (12)0.0026 (11)
C100.0363 (15)0.0165 (12)0.0265 (15)0.0026 (11)0.0004 (11)0.0027 (10)
C110.0248 (14)0.0174 (10)0.0281 (13)0.0036 (10)0.0006 (11)0.0024 (9)
C120.0306 (14)0.0264 (11)0.0236 (12)0.0002 (13)0.0007 (14)0.0033 (9)
C130.0252 (13)0.0278 (13)0.0208 (13)0.0026 (10)0.0011 (11)0.0017 (11)
C140.0221 (13)0.0337 (14)0.0222 (14)0.0064 (11)0.0005 (10)0.0021 (12)
C150.0244 (15)0.0355 (13)0.0254 (13)0.0016 (11)0.0006 (10)0.0023 (11)
C160.0305 (15)0.0295 (14)0.0259 (15)0.0045 (11)0.0012 (11)0.0030 (12)
C170.0284 (14)0.0296 (14)0.0248 (14)0.0042 (11)0.0028 (11)0.0041 (12)
C180.0221 (14)0.0291 (11)0.0217 (11)0.0043 (11)0.0009 (11)0.0052 (9)
Geometric parameters (Å, º) top
Br1—C101.901 (3)C5—H5a0.96
Br2—C171.905 (3)C5—H5b0.96
O1—C71.355 (4)C6—C71.413 (4)
O1—H1o0.85 (3)C6—C111.396 (4)
O2—C141.365 (3)C7—C81.390 (4)
O2—H2o0.85 (3)C8—C91.382 (4)
N1—C11.453 (3)C8—H80.96
N1—C21.481 (3)C9—C101.394 (4)
N1—C51.474 (3)C9—H90.96
N2—C11.465 (3)C10—C111.378 (4)
N2—C41.470 (3)C11—H110.96
N2—C121.470 (3)C12—C131.512 (4)
C1—H1a0.96C12—H12a0.96
C1—H1b0.96C12—H12b0.96
C2—C31.513 (4)C13—C141.410 (4)
C2—H2a0.96C13—C181.389 (4)
C2—H2b0.96C14—C151.388 (4)
C3—C41.522 (4)C15—C161.388 (4)
C3—H3a0.96C15—H150.96
C3—H3b0.96C16—C171.388 (4)
C4—H4a0.96C16—H160.96
C4—H4b0.96C17—C181.383 (4)
C5—C61.508 (4)C18—H180.96
C7—O1—H1o108 (2)C7—C6—C11118.5 (2)
C14—O2—H2o111 (2)O1—C7—C6121.9 (3)
C1—N1—C2110.1 (2)O1—C7—C8118.0 (2)
C1—N1—C5110.24 (19)C6—C7—C8120.2 (3)
C2—N1—C5112.4 (2)C7—C8—C9120.7 (3)
C1—N2—C4110.1 (2)C7—C8—H8119.6439
C1—N2—C12111.6 (2)C9—C8—H8119.6447
C4—N2—C12110.3 (2)C8—C9—C10119.0 (3)
N1—C1—N2109.4 (2)C8—C9—H9120.4851
N1—C1—H1a109.4712C10—C9—H9120.4852
N1—C1—H1b109.4714Br1—C10—C9118.9 (2)
N2—C1—H1a109.4709Br1—C10—C11120.0 (2)
N2—C1—H1b109.4715C9—C10—C11121.1 (3)
H1a—C1—H1b109.5538C6—C11—C10120.5 (2)
N1—C2—C3108.8 (2)C6—C11—H11119.773
N1—C2—H2a109.4711C10—C11—H11119.7736
N1—C2—H2b109.4713N2—C12—C13112.9 (2)
C3—C2—H2a109.4717N2—C12—H12a109.4712
C3—C2—H2b109.471N2—C12—H12b109.4714
H2a—C2—H2b110.1093C13—C12—H12a109.471
C2—C3—C4111.1 (2)C13—C12—H12b109.471
C2—C3—H3a109.4713H12a—C12—H12b105.8417
C2—C3—H3b109.4711C12—C13—C14121.6 (2)
C4—C3—H3a109.4717C12—C13—C18119.6 (2)
C4—C3—H3b109.4711C14—C13—C18118.7 (2)
H3a—C3—H3b107.8053O2—C14—C13121.7 (2)
N2—C4—C3109.9 (2)O2—C14—C15118.2 (2)
N2—C4—H4a109.4721C13—C14—C15120.1 (2)
N2—C4—H4b109.4708C14—C15—C16121.0 (2)
C3—C4—H4a109.4712C14—C15—H15119.5034
C3—C4—H4b109.4711C16—C15—H15119.5043
H4a—C4—H4b109.0337C15—C16—C17118.4 (3)
N1—C5—C6112.3 (2)C15—C16—H16120.817
N1—C5—H5a109.4708C17—C16—H16120.8173
N1—C5—H5b109.4703Br2—C17—C16119.5 (2)
C6—C5—H5a109.4717Br2—C17—C18118.9 (2)
C6—C5—H5b109.4716C16—C17—C18121.6 (3)
H5a—C5—H5b106.4462C13—C18—C17120.2 (3)
C5—C6—C7121.9 (3)C13—C18—H18119.8928
C5—C6—C11119.6 (2)C17—C18—H18119.8919
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C6–C11 aromatic ring.
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.85 (3)1.87 (3)2.634 (3)148 (3)
O2—H2o···N20.85 (3)1.92 (3)2.654 (3)144 (3)
C11—H11···Cg2i0.962.963.632 (2)128
Symmetry code: (i) x1, y+1/2, z+5/2.

Experimental details

Crystal data
Chemical formulaC18H20Br2N2O2
Mr456.2
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)5.9602 (3), 17.2164 (8), 17.7222 (8)
V3)1818.53 (15)
Z4
Radiation typeCu Kα
µ (mm1)5.76
Crystal size (mm)0.35 × 0.09 × 0.03
Data collection
DiffractometerAgilent Xcalibur with an Atlas (Gemini ultra Cu) detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.63, 1
No. of measured, independent and
observed [I > 3σ(I)] reflections
14453, 3221, 3014
Rint0.034
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.056, 1.37
No. of reflections3221
No. of parameters225
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.34
Absolute structureFlack (1983), 1894 Friedel pairs
Absolute structure parameter0.148 (19)

Computer programs: CrysAlis PRO (Agilent, 2010), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C6–C11 aromatic ring.
D—H···AD—HH···AD···AD—H···A
O1—H1o···N10.85 (3)1.87 (3)2.634 (3)148 (3)
O2—H2o···N20.85 (3)1.92 (3)2.654 (3)144 (3)
C11—H11···Cg2i0.962.963.632 (2)128
Symmetry code: (i) x1, y+1/2, z+5/2.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences of the Czech Republic.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.  Google Scholar
First citationRivera, A., González, D. M., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012). Acta Cryst. E68, o191–o192.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRivera, A., Quiroga, D., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011). Acta Cryst. E67, o753.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Ríos-Motta, J., Dušek, M. & Jarošová, M. (2010). Acta Cryst. C66, o222–o224.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds