organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Cyano-N,N-di­methyl­acetamide

aNanjing College of Chemical Technology, No. 625, Geguan Road, Luhe, Nanjing 210048, People's Republic of China, bDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and cJiangsu Changqing Agrochemical Co. Ltd, No.1 Jiangling Road, Putou Town, Jiangdu City, Jiangsu 225218, People's Republic of China
*Correspondence e-mail: dols80@163.com

(Received 26 December 2011; accepted 8 January 2012; online 18 January 2012)

In the crystal structure of the title compound, C5H8N2O, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For uses of 2-cyano-N, N-dimethyl­acetamide, see: Liu et al. (2011[Liu, S., Yu, G. Q., Du, G., Lv, L. Z., Yang, X. Y., Wang, S. J., Xu, N., Wang, J. R. & Zhou, X. J. (2011). China Patent CN2011104108331.]). For the synthesis, see: Liu et al. (2011[Liu, S., Yu, G. Q., Du, G., Lv, L. Z., Yang, X. Y., Wang, S. J., Xu, N., Wang, J. R. & Zhou, X. J. (2011). China Patent CN2011104108331.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C5H8N2O

  • Mr = 112.13

  • Monoclinic, P 21 /c

  • a = 4.1690 (8) Å

  • b = 9.3940 (19) Å

  • c = 15.880 (3) Å

  • β = 92.67 (3)°

  • V = 621.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968)[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.] Tmin = 0.975, Tmax = 0.991

  • 1294 measured reflections

  • 1129 independent reflections

  • 666 reflections with I > 2σ(I)

  • Rint = 0.051

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.167

  • S = 1.01

  • 1129 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯Oi 0.97 2.38 3.300 (3) 159
C4—H4B⋯Oii 0.97 2.41 3.141 (3) 132
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1985)[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]; cell refinement: CAD-4 Software[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-Cyano-N, N-dimethylacetamide is an important intermediate used to synthesize the herbicide of nicosulfuron (Liu et al., 2011). We report here the crystal structure of the title compound (Fig. 1).

In the title molecule, bond lengths (Allen et al. , 1987) and angles are within normal ranges. In the crystal packing (Fig. 2), molecules are linked by weak intermolecular C–H···O hydrogen bonds (see, Table 1).

Related literature top

For uses of 2-cyano-N, N-dimethylacetamide, see: Liu et al. (2011). For the synthesis, see: Liu et al. (2011). For bond-length data, see: Allen et al. (1987).

Experimental top

2-Cyano-N,N-dimethylacetamide was prepared by the method reported in literature (Liu et al., 2011). Single crystals were obtained by dissolving 2-Cyano-N, N-dimethylacetamide (0.50 g, 4.46 mmol) in ethyl acetate (30 ml) and evaporating the solvent slowly at room temperature for about 7 d.

Refinement top

H atoms were positioned geometrically, with O–H = 0.82 and C–H = 0.93Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/O), where x = 1.2 for aromatic H and x = 1.5 for other H.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C–H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. [Symmter codes: (i) - x + 1, y + 1/2 , - z + 1/2; (ii) - x, y + 1/2, - z + 1/2; (iii) - x + 1, y - 1/2, - z + 1/2; (iv) - x , y -1/2, - z -1/2.]
2-Cyano-N,N-dimethylacetamide top
Crystal data top
C5H8N2OF(000) = 240
Mr = 112.13Dx = 1.199 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 4.1690 (8) Åθ = 9–13°
b = 9.3940 (19) ŵ = 0.09 mm1
c = 15.880 (3) ÅT = 298 K
β = 92.67 (3)°Block, brown
V = 621.2 (2) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
666 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
Graphite monochromatorθmax = 25.4°, θmin = 2.5°
ω/2θ scansh = 05
Absorption correction: ψ scan
(North et al., 1968)
k = 011
Tmin = 0.975, Tmax = 0.991l = 1919
1294 measured reflections3 standard reflections every 200 reflections
1129 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: difference Fourier map
wR(F2) = 0.167H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.09P)2 + 0.P]
where P = (Fo2 + 2Fc2)/3
1129 reflections(Δ/σ)max < 0.001
73 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C5H8N2OV = 621.2 (2) Å3
Mr = 112.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.1690 (8) ŵ = 0.09 mm1
b = 9.3940 (19) ÅT = 298 K
c = 15.880 (3) Å0.30 × 0.20 × 0.10 mm
β = 92.67 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
666 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.051
Tmin = 0.975, Tmax = 0.9913 standard reflections every 200 reflections
1294 measured reflections intensity decay: 1%
1129 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
1129 reflectionsΔρmin = 0.18 e Å3
73 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.2785 (4)0.08459 (15)0.22552 (10)0.0789 (6)
C40.1898 (6)0.3244 (2)0.26152 (15)0.0703 (7)
H4A0.37180.38510.27660.084*
H4B0.02860.38240.23190.084*
C30.2962 (6)0.2083 (2)0.20353 (15)0.0617 (6)
N10.4071 (5)0.2461 (2)0.13046 (13)0.0747 (7)
C50.0598 (7)0.2697 (3)0.33702 (18)0.0758 (8)
C20.5089 (8)0.1366 (3)0.07292 (18)0.0956 (9)
H2A0.49640.04510.09950.143*
H2B0.72630.15450.05850.143*
H2C0.37150.13780.02270.143*
N20.0412 (8)0.2295 (3)0.39639 (19)0.1157 (10)
C10.4201 (9)0.3936 (3)0.09947 (19)0.1010 (11)
H1A0.35140.45740.14230.151*
H1B0.28120.40330.04990.151*
H1C0.63630.41630.08600.151*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.1110 (14)0.0480 (10)0.0791 (12)0.0014 (10)0.0192 (10)0.0048 (8)
C40.0821 (16)0.0537 (14)0.0757 (17)0.0009 (13)0.0097 (13)0.0052 (11)
C30.0797 (16)0.0448 (12)0.0604 (14)0.0005 (12)0.0003 (11)0.0023 (10)
N10.1086 (18)0.0552 (11)0.0609 (12)0.0038 (12)0.0102 (11)0.0037 (9)
C50.0924 (18)0.0651 (15)0.0708 (18)0.0047 (15)0.0125 (14)0.0105 (13)
C20.128 (2)0.093 (2)0.0672 (17)0.0092 (19)0.0192 (16)0.0067 (15)
N20.141 (2)0.116 (2)0.094 (2)0.0157 (19)0.0406 (18)0.0064 (17)
C10.157 (3)0.0709 (17)0.0753 (19)0.015 (2)0.0080 (18)0.0182 (14)
Geometric parameters (Å, º) top
O—C31.217 (2)C5—N21.116 (3)
C4—C51.434 (4)C2—H2A0.9600
C4—C31.507 (3)C2—H2B0.9600
C4—H4A0.9700C2—H2C0.9600
C4—H4B0.9700C1—H1A0.9600
C3—N11.318 (3)C1—H1B0.9600
N1—C21.453 (3)C1—H1C0.9600
N1—C11.472 (3)
C5—C4—C3112.6 (2)N1—C2—H2A109.5
C5—C4—H4A109.1N1—C2—H2B109.5
C3—C4—H4A109.1H2A—C2—H2B109.5
C5—C4—H4B109.1N1—C2—H2C109.5
C3—C4—H4B109.1H2A—C2—H2C109.5
H4A—C4—H4B107.8H2B—C2—H2C109.5
O—C3—N1122.6 (2)N1—C1—H1A109.5
O—C3—C4119.5 (2)N1—C1—H1B109.5
N1—C3—C4117.94 (19)H1A—C1—H1B109.5
C3—N1—C2119.2 (2)N1—C1—H1C109.5
C3—N1—C1124.6 (2)H1A—C1—H1C109.5
C2—N1—C1116.1 (2)H1B—C1—H1C109.5
N2—C5—C4178.7 (3)
C5—C4—C3—O3.2 (3)O—C3—N1—C1177.2 (3)
C5—C4—C3—N1177.1 (2)C4—C3—N1—C13.1 (4)
O—C3—N1—C20.8 (4)C3—C4—C5—N2167 (15)
C4—C3—N1—C2179.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···Oi0.972.383.300 (3)159
C4—H4B···Oii0.972.413.141 (3)132
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H8N2O
Mr112.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)4.1690 (8), 9.3940 (19), 15.880 (3)
β (°) 92.67 (3)
V3)621.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.975, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
1294, 1129, 666
Rint0.051
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.167, 1.01
No. of reflections1129
No. of parameters73
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.18

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···Oi0.97002.38003.300 (3)159.00
C4—H4B···Oii0.97002.41003.141 (3)132.00
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLiu, S., Yu, G. Q., Du, G., Lv, L. Z., Yang, X. Y., Wang, S. J., Xu, N., Wang, J. R. & Zhou, X. J. (2011). China Patent CN2011104108331.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds