organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Bromo-5-tert-butyl-2-hy­dr­oxy­benz­alde­hyde

aAsthagiri Herbal Research Foundation, 162-A, Industrial Estate, Perungudi, Chennai 600 092, India, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Maraimalai Campus (Guindy Campus), Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 24 October 2011; accepted 16 November 2011; online 19 November 2011)

The mol­ecular conformation of the title compound, C11H13BrO2, is stabilized by an intra­molecular O—H⋯O hydrogen bond. All non-H atoms except the methyl groups lie approximately in a common plane (r.m.s. deviation = 0.011 Å).

Related literature

For the biological activity of substituted salicyl­aldehyde and its derivatives, see: Mounika et al. (2010[Mounika, K., Anupama, B., Pragathi, J. & Gyanakumari, C. (2010). J. Sci. Res. 2, 513-524.]); Dueke-Eze et al. (2010[Dueke-Eze, C. U., Fasina, T. M. & Idika, N. (2010). Afr. J. Pure Appl. Chem. 5, 13-18.]); Jesmin et al. (2010[Jesmin, M., Ali, M. M. & Khanam, J. A. (2010). Thai J. Pharm. Sci. 34, 20-31.]). For a related structure, see: Wang et al. (2010[Wang, Y., Qiu, Z. & Liang, H. (2010). Acta Cryst. E66, o2218.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13BrO2

  • Mr = 257.11

  • Orthorhombic, P b c a

  • a = 9.9727 (19) Å

  • b = 12.174 (2) Å

  • c = 18.558 (3) Å

  • V = 2253.0 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.62 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • 11555 measured reflections

  • 2808 independent reflections

  • 1442 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.162

  • S = 1.02

  • 2808 reflections

  • 131 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.82 1.93 2.650 (6) 145

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The crystal structure determination of the title compound was undertaken as a part of the synthesis, structure and properties of new substituted salicylaldehyde derivatives.

In the title compound, the substituted aldehyde group, hydroxy group and and bromine are essentially coplanar with the benzene ring with a plane mean deviation of 0.025 (6)°, -0.029 (4)°, -0.015 (1)° and -0.015 (1)°, respectively. An intramolecular O2—H2A···O(1) hydrogen bonding observed between the oxygen atoms of the hydroxy group and the aldehyde group stabilizes the molecular structure.

Related literature top

For the biological activity of substituted salicylaldehyde and its derivatives, see: Mounika et al. (2010); Dueke-Eze et al. (2010); Jesmin et al. (2010). For a related structure, see: Wang et al. (2010).

Experimental top

The synthesis of the title compound follows the modified Riemmer-Tiemann reaction, in which the substituted salicylaldehydes were synthesized from substituted phenols. To 80 mL of water 60g of sodium hydroxide was added and dissolved completely. Then 15g of 4-tert-butyl phenol was added and heated to 60-65°C. 30 mL chloroform was added step by step to the mixture. The resulting reaction mixture was heated for one hour, until the formation of precipitate. The liquid layer containing 5-tert-butyl-2-hydroxy benzaldehyde as the product was separated through suction pump. It was then brominated using liquid bromine and acetic acid. The final product 3-bromo-5-tert-butyl-2-hydroxy benzaldehyde with a maximum yield of 83% was checked for purity using TLC.

Refinement top

Hydrogen atoms were placed in calculated positions with O—H = 0.82Å, Caromatic—H = 0.93Å, Cmethyl—H = 0.96Å and refined using a riding model with fixed isotropic displacement parameters Uiso(H) = 1.5 Ueq(Cmethyl, O) or Uiso(H) = 1.2 Ueq(Caromatic) or.

Structure description top

The crystal structure determination of the title compound was undertaken as a part of the synthesis, structure and properties of new substituted salicylaldehyde derivatives.

In the title compound, the substituted aldehyde group, hydroxy group and and bromine are essentially coplanar with the benzene ring with a plane mean deviation of 0.025 (6)°, -0.029 (4)°, -0.015 (1)° and -0.015 (1)°, respectively. An intramolecular O2—H2A···O(1) hydrogen bonding observed between the oxygen atoms of the hydroxy group and the aldehyde group stabilizes the molecular structure.

For the biological activity of substituted salicylaldehyde and its derivatives, see: Mounika et al. (2010); Dueke-Eze et al. (2010); Jesmin et al. (2010). For a related structure, see: Wang et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
3-Bromo-5-tert-butyl-2-hydroxybenzaldehyde top
Crystal data top
C11H13BrO2F(000) = 1040
Mr = 257.11Dx = 1.516 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2808 reflections
a = 9.9727 (19) Åθ = 2.2–28.3°
b = 12.174 (2) ŵ = 3.62 mm1
c = 18.558 (3) ÅT = 293 K
V = 2253.0 (7) Å3Block, red
Z = 80.2 × 0.2 × 0.2 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
1442 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.079
Graphite monochromatorθmax = 28.3°, θmin = 2.2°
ω and φ scansh = 1313
11555 measured reflectionsk = 1616
2808 independent reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.0685P)2 + 1.3566P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2808 reflectionsΔρmax = 0.59 e Å3
131 parametersΔρmin = 0.49 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0228 (17)
Crystal data top
C11H13BrO2V = 2253.0 (7) Å3
Mr = 257.11Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.9727 (19) ŵ = 3.62 mm1
b = 12.174 (2) ÅT = 293 K
c = 18.558 (3) Å0.2 × 0.2 × 0.2 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
1442 reflections with I > 2σ(I)
11555 measured reflectionsRint = 0.079
2808 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.02Δρmax = 0.59 e Å3
2808 reflectionsΔρmin = 0.49 e Å3
131 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2770 (5)0.1032 (4)0.2246 (2)0.0474 (11)
C20.3680 (5)0.0161 (4)0.2178 (2)0.0507 (12)
C30.4296 (4)0.0219 (3)0.2794 (2)0.0454 (10)
C40.4025 (4)0.0242 (3)0.3456 (2)0.0462 (10)
H40.44680.00270.38600.055*
C50.3112 (4)0.1097 (3)0.3540 (2)0.0422 (10)
C60.2493 (5)0.1482 (3)0.2924 (2)0.0473 (11)
H20.18780.20540.29600.057*
C70.2094 (6)0.1487 (4)0.1612 (3)0.0656 (14)
H70.15090.20730.16800.079*
C80.2802 (5)0.1613 (4)0.4275 (2)0.0526 (12)
C90.1367 (8)0.1334 (7)0.4478 (4)0.136 (3)
H9A0.12720.13580.49920.204*
H9B0.11530.06100.43080.204*
H9C0.07700.18570.42620.204*
C100.3682 (8)0.1149 (6)0.4877 (3)0.104 (2)
H10A0.46040.13190.47800.156*
H10B0.35700.03670.49010.156*
H10C0.34230.14710.53280.156*
C110.3014 (10)0.2826 (5)0.4242 (3)0.131 (4)
H11A0.38990.29770.40630.196*
H11B0.29190.31330.47160.196*
H11C0.23620.31490.39260.196*
O10.2253 (5)0.1147 (3)0.1006 (2)0.0919 (14)
O20.3953 (4)0.0316 (3)0.15377 (18)0.0749 (10)
H2A0.35230.00090.12190.112*
Br10.55350 (5)0.13980 (4)0.27226 (4)0.0729 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.050 (3)0.052 (2)0.040 (2)0.012 (2)0.001 (2)0.0048 (19)
C20.050 (3)0.056 (2)0.047 (3)0.017 (2)0.013 (2)0.012 (2)
C30.041 (2)0.0376 (19)0.057 (3)0.0019 (17)0.005 (2)0.0125 (18)
C40.046 (2)0.045 (2)0.047 (3)0.004 (2)0.005 (2)0.0026 (19)
C50.047 (3)0.042 (2)0.038 (2)0.0035 (18)0.001 (2)0.0045 (16)
C60.052 (3)0.043 (2)0.047 (3)0.001 (2)0.000 (2)0.0012 (17)
C70.073 (4)0.076 (3)0.048 (3)0.003 (3)0.010 (3)0.002 (2)
C80.065 (3)0.057 (3)0.036 (2)0.010 (2)0.007 (3)0.0029 (19)
C90.095 (5)0.231 (10)0.081 (5)0.019 (6)0.037 (5)0.059 (5)
C100.142 (7)0.119 (5)0.052 (3)0.040 (5)0.007 (4)0.004 (3)
C110.276 (12)0.059 (3)0.057 (3)0.006 (5)0.001 (5)0.017 (3)
O10.111 (4)0.119 (3)0.046 (2)0.009 (3)0.015 (2)0.001 (2)
O20.080 (2)0.092 (2)0.053 (2)0.007 (2)0.019 (2)0.0289 (18)
Br10.0566 (4)0.0588 (4)0.1033 (6)0.0078 (2)0.0097 (3)0.0204 (3)
Geometric parameters (Å, º) top
C1—C61.400 (6)C8—C111.494 (7)
C1—C21.401 (7)C8—C91.518 (9)
C1—C71.465 (7)C8—C101.528 (8)
C2—O21.350 (5)C9—H9A0.9600
C2—C31.377 (6)C9—H9B0.9600
C3—C41.377 (6)C9—H9C0.9600
C3—Br11.899 (4)C10—H10A0.9600
C4—C51.392 (6)C10—H10B0.9600
C4—H40.9300C10—H10C0.9600
C5—C61.381 (6)C11—H11A0.9600
C5—C81.533 (6)C11—H11B0.9600
C6—H20.9300C11—H11C0.9600
C7—O11.209 (6)O2—H2A0.8200
C7—H70.9300
C6—C1—C2120.3 (4)C9—C8—C10106.1 (5)
C6—C1—C7118.9 (4)C11—C8—C5109.8 (4)
C2—C1—C7120.8 (4)C9—C8—C5108.6 (5)
O2—C2—C3119.8 (4)C10—C8—C5112.6 (4)
O2—C2—C1122.3 (4)C8—C9—H9A109.5
C3—C2—C1117.9 (4)C8—C9—H9B109.5
C4—C3—C2121.1 (4)H9A—C9—H9B109.5
C4—C3—Br1119.8 (4)C8—C9—H9C109.5
C2—C3—Br1119.1 (3)H9A—C9—H9C109.5
C3—C4—C5122.2 (4)H9B—C9—H9C109.5
C3—C4—H4118.9C8—C10—H10A109.5
C5—C4—H4118.9C8—C10—H10B109.5
C6—C5—C4116.9 (4)H10A—C10—H10B109.5
C6—C5—C8120.5 (4)C8—C10—H10C109.5
C4—C5—C8122.5 (4)H10A—C10—H10C109.5
C5—C6—C1121.6 (4)H10B—C10—H10C109.5
C5—C6—H2119.2C8—C11—H11A109.5
C1—C6—H2119.2C8—C11—H11B109.5
O1—C7—C1123.9 (5)H11A—C11—H11B109.5
O1—C7—H7118.1C8—C11—H11C109.5
C1—C7—H7118.1H11A—C11—H11C109.5
C11—C8—C9111.4 (6)H11B—C11—H11C109.5
C11—C8—C10108.3 (5)C2—O2—H2A109.5
C6—C1—C2—O2178.4 (4)C4—C5—C6—C10.1 (6)
C7—C1—C2—O21.7 (7)C8—C5—C6—C1179.4 (4)
C6—C1—C2—C30.8 (6)C2—C1—C6—C50.8 (7)
C7—C1—C2—C3179.0 (4)C7—C1—C6—C5179.1 (4)
O2—C2—C3—C4179.2 (4)C6—C1—C7—O1179.1 (5)
C1—C2—C3—C40.0 (6)C2—C1—C7—O11.0 (8)
O2—C2—C3—Br10.7 (6)C6—C5—C8—C1153.8 (7)
C1—C2—C3—Br1180.0 (3)C4—C5—C8—C11125.4 (6)
C2—C3—C4—C50.9 (7)C6—C5—C8—C968.3 (6)
Br1—C3—C4—C5179.1 (3)C4—C5—C8—C9112.5 (6)
C3—C4—C5—C60.9 (6)C6—C5—C8—C10174.5 (5)
C3—C4—C5—C8179.8 (4)C4—C5—C8—C104.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.821.932.650 (6)145

Experimental details

Crystal data
Chemical formulaC11H13BrO2
Mr257.11
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)9.9727 (19), 12.174 (2), 18.558 (3)
V3)2253.0 (7)
Z8
Radiation typeMo Kα
µ (mm1)3.62
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11555, 2808, 1442
Rint0.079
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.162, 1.02
No. of reflections2808
No. of parameters131
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.49

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.821.932.650 (6)145
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDueke-Eze, C. U., Fasina, T. M. & Idika, N. (2010). Afr. J. Pure Appl. Chem. 5, 13–18.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJesmin, M., Ali, M. M. & Khanam, J. A. (2010). Thai J. Pharm. Sci. 34, 20–31.  CAS Google Scholar
First citationMounika, K., Anupama, B., Pragathi, J. & Gyanakumari, C. (2010). J. Sci. Res. 2, 513-524.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148-155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Qiu, Z. & Liang, H. (2010). Acta Cryst. E66, o2218.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds