metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[aqua­(formato-κO)(1,10-phenanthroline-κ2N,N′)manganese(II)]-μ-formato-κ2O:O′] monohydrate]

aCenter of Applied Solid State Chemistry Research, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: xuwei@nbu.edu.cn

(Received 17 May 2011; accepted 29 May 2011; online 11 June 2011)

The title compound, {[Mn(HCOO)2(C12H8N2)(H2O)]·H2O}n, consists of polymeric chains of the complex [Mn(HCOO)2(phen)(H2O)] (phen is 1,10-phenanthroline) with solvent water mol­ecules. The chains contain six-coordinate MnII ions bridged by formate anions. They are further extended into a three-dimensional network via O—H⋯O hydrogen-bonding inter­actions and inter­chain ππ stacking inter­actions, with a centroid–centroid distance of 3.679 (4) Å.

Related literature

For the design and synthesis of coordination polymer complexes and their potential applications, see: Robin & Fromm (2006[Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127-2157.]); Farrusseng et al. (2008[Farrusseng, D., Aguado, S. & Pinel, C. (2008). Angew. Chem. Int. Ed. 48, 7502-7503.]); Chen et al. (2010[Chen, Z. X., Xiang, S. C., Arman, H. D., Li, P., Tidrow, S., Zhao, D. Y. & Chen, B. L. (2010). Eur. J. Inorg. Chem. pp. 3745-3749.]). For the formate anion as a ligand, see: Yuan et al. (2008[Yuan, P. L., Li, P. Z., Sun, Q. F., Liu, L. X., Gao, K., Liu, W. S., Lu, X. M. & Yu, S. Y. (2008). J. Mol. Struct. 890, 112-115]); Hagen et al. (2009[Hagen, K. S., Naik, S. G., Huynh, B. H., Masello, A. & Christou, G. (2009). J. Am. Chem. Soc. 131, 7516-7517.]); Hu et al. (2009[Hu, K. L., Kurmoo, M., Wang, Z. M. & Gao, S. (2009). Chem. Eur. J. 15, 12050-12064.]); Paredes-Gaecía (2009[Paredes-Gaecía, V. (2009). Inorg. Chem. 48, 4737-4742.]). For a related structure, see: Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(HCO2)2(C12H8N2)(H2O)]·H2O

  • Mr = 361.21

  • Orthorhombic, P n a 21

  • a = 19.260 (4) Å

  • b = 12.161 (2) Å

  • c = 6.5493 (13) Å

  • V = 1534.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 295 K

  • 0.31 × 0.12 × 0.09 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.664, Tmax = 0.791

  • 11493 measured reflections

  • 2644 independent reflections

  • 1921 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.111

  • S = 1.20

  • 2644 reflections

  • 209 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.93 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1165 Friedel pairs

  • Flack parameter: 0.01 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯O2 0.83 1.96 2.713 (5) 150
O5—H5C⋯O6 0.85 1.76 2.601 (6) 177
O6—H6B⋯O4i 0.83 1.88 2.693 (8) 166
O6—H6C⋯O4ii 0.83 2.13 2.864 (9) 145
Symmetry codes: (i) [-x+1, -y, z-{\script{1\over 2}}]; (ii) x, y, z-1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, extensive efforts have been dedicated to the design and construction of coordination polymers because their supramolecular architectures with specific topologies may endow them with promising properties for material chemistry, such as gas sorption, storage and separations, molecular recognition, heterogeneous catalysis, nonlinear optics and magnetic properties (Robin & Fromm, 2006; Farrusseng, et al., 2008; Chen, et al., 2010). Investigations on a series of transition metal formate anions showed that it tend to function as a bidentate ligand to bridge metal atoms into one-dimensional chains, two-dimensional layers and three-dimensional networks (Hagen, et al., 2009; Hu, et al., 2009; Paredes-Gaecía, 2009). In the present contribution, we report a new manganese(II) complex, [Mn(HCOO)2(phen)(H2O)].H2O (I), resulting from self-assembly of Mn2+ ions, 1,10-phenanthroline and formic acid. It is isostructural with the previously reported [Co(HCOO)2(phen)(H2O)].H2O complex (Yuan, et al., 2008).

Compound I consists of an neutral one-dimensional zigzag chains [Mn(HCOO)2(phen)(H2O)]n and lattice water molecules. As shown in Fig. 1, each Mn atom is octahedral coordination by two N atoms of phen ligand, two O atoms of two bridging formate anions, one O atom of one terminal formate anion and one O atom of the coordination water molecule. The octehedral coordination around the Mn atoms are strongly distorted since the diametrical and non-diametrical bond angles indicate significant deviations from 180° and 90°, respectively. The Mn-O distances are in the range of 2.134 (5)-2.228 (4) Å, while the Mn-N distances are 2.246 (5) and 2.295 (5) Å. Then two neighboring MnII centers connected by formate anion with the distance of 5.474 (5) Å form one-dimensional zigzag chain along [001] (Fig. 2).

The coordinated water molecule forms a strong intra-chain hydrogen bond to the carboxyl O2 with d(O···O) = 2.713 (5) Å and <O-H···O = 150°. There are three kinds of independent inter-chain hydrogen bonds responsible for the two-dimensional layers assembly (Fig. 3, Table 1). One kind of the inter-chain O-H···O hydrogen bonds is formed between the O-H group of coordinated water molecules acting as acceptors (the O···O distance is 2.601 (6) Å with a O-H···O angle of 177°). The other two kinds are formed between the O-H groups of uncoordinated water molecules and the uncoordinated oxygen atoms of the carboxyl groups from the coordianted terminal formate anions in two adjacent chains, with the different O···O distances of 2.693 (8) and 2.864 (9) Å, and two different O-H···O angles of 166° and 145°, respectively. The phen ligands chelating Mn atoms exhibit nearly perfect coplanarity. Two neighboring phen ligands of different chains parallelly face opposite directions at an interplanar centroid to centroid distance of 3.679 (4) Å, with the quinoline fragments partially covered, which suggests significant inter-chain π-π stacking interactions (Janiak, 2000). Acoording to the above description, it is clear that the π-π interactions and inter-chain hydrogen bonding interactions are responsible for the supramolecular assembly of the three-dimensional network.

Related literature top

For the design and synthesis of coordination polymer complexes and their potential applications, see: Robin & Fromm (2006); Farrusseng et al. (2008); Chen et al. (2010). For the formate anion as a ligand, see: Yuan et al. (2008); Hagen et al. (2009); Hu et al. (2009); Paredes-Gaecía (2009). For a related structure, see: Janiak (2000).

Experimental top

Addition of 2.0 mL (1.0 M) NaOH to a stirred aqueous of 0.201 g (1.0 mmol) MnCl2.4H2O in 5.0 mL H2O yield yellowish precipitate, which was then separated by centrifugation, followed by washing with double-distilled water until no detectable Cl- anions in supernatant. The precipitate was added to a stirred ethanolic aqueous solution of 0.198 g (1.0 mmol) 1,10-phenanthroline monohydrate in 20 mL EtOH/H2O (v:v = 1: 1). To the mixture was added 2.0 mL (1.0 M) HCOOH and the yellowish suspension was further stirred for ca. 30 min. After filtration, the solution (pH = 6.58) was allowed to stand at room temperature. Slow evaporation for two weeks affored yellowish crystals (yield 62% based on the initial MnCl2.4H2O input).

Refinement top

All H atoms bound to C were position geometrically and refined as riding, with C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms attached to O were located in difference Fourier maps and placed at fixed positions with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound (40% thermal ellipsoids) showing the atom-labeling scheme. [Symmetry Code: (i) 1-x, 1-y, 1/2+z)
[Figure 2] Fig. 2. one dimensional zigzag chain along [001]
[Figure 3] Fig. 3. A view of a single layer of I, hydrogen-bonding is indicated as dashed lines.
catena-Poly[[[aqua(formato-κO)(1,10-phenanthroline- κ2N,N')manganese(II)]-µ-formato-κ2O:O'] monohydrate] top
Crystal data top
[Mn(HCO2)2(C12H8N2)(H2O)]·H2OF(000) = 740
Mr = 361.21Dx = 1.564 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 8376 reflections
a = 19.260 (4) Åθ = 3.4–27.4°
b = 12.161 (2) ŵ = 0.89 mm1
c = 6.5493 (13) ÅT = 295 K
V = 1534.0 (5) Å3Needle, yellow
Z = 40.31 × 0.12 × 0.09 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2644 independent reflections
Radiation source: fine-focus sealed tube1921 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 25.0°, θmin = 3.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2222
Tmin = 0.664, Tmax = 0.791k = 1414
11493 measured reflectionsl = 77
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0135P)2 + 2.7605P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.111(Δ/σ)max < 0.001
S = 1.20Δρmax = 0.70 e Å3
2644 reflectionsΔρmin = 0.93 e Å3
209 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0025 (6)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1165 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (4)
Crystal data top
[Mn(HCO2)2(C12H8N2)(H2O)]·H2OV = 1534.0 (5) Å3
Mr = 361.21Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 19.260 (4) ŵ = 0.89 mm1
b = 12.161 (2) ÅT = 295 K
c = 6.5493 (13) Å0.31 × 0.12 × 0.09 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2644 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1921 reflections with I > 2σ(I)
Tmin = 0.664, Tmax = 0.791Rint = 0.047
11493 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.111Δρmax = 0.70 e Å3
S = 1.20Δρmin = 0.93 e Å3
2644 reflectionsAbsolute structure: Flack (1983), 1165 Friedel pairs
209 parametersAbsolute structure parameter: 0.01 (4)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.57992 (4)0.37155 (6)0.67916 (16)0.0454 (3)
N10.6768 (3)0.3026 (4)0.5202 (9)0.0525 (13)
N20.6704 (2)0.4167 (4)0.8785 (8)0.0470 (12)
C10.6796 (4)0.2444 (5)0.3480 (10)0.068 (2)
H1A0.63850.22770.28020.082*
C20.7429 (5)0.2076 (6)0.2658 (13)0.087 (3)
H2A0.74350.16620.14640.105*
C30.8034 (5)0.2333 (7)0.3629 (15)0.091 (3)
H3A0.84550.20990.30840.110*
C40.8027 (4)0.2946 (6)0.5440 (13)0.073 (2)
C50.8643 (4)0.3266 (7)0.6559 (18)0.093 (3)
H5A0.90770.30740.60490.112*
C60.8603 (4)0.3828 (8)0.8299 (16)0.096 (3)
H6A0.90100.40060.89880.116*
C70.7958 (3)0.4161 (6)0.9127 (12)0.067 (2)
C80.7882 (4)0.4722 (7)1.0989 (12)0.079 (3)
H8A0.82740.49061.17420.095*
C90.7246 (4)0.4999 (5)1.1701 (14)0.0725 (19)
H9A0.71970.53721.29320.087*
C100.6668 (4)0.4714 (5)1.0556 (11)0.0600 (17)
H10A0.62330.49131.10430.072*
C110.7335 (3)0.3880 (5)0.8082 (10)0.0513 (16)
C120.7379 (3)0.3280 (5)0.6200 (10)0.0553 (19)
C130.5493 (3)0.5910 (5)0.4494 (9)0.0508 (15)
H130.55620.66620.43250.061*
O10.5939 (2)0.5392 (3)0.5480 (7)0.0537 (11)
O20.4966 (2)0.5501 (3)0.3718 (7)0.0599 (12)
C140.5604 (4)0.1288 (6)0.7827 (12)0.071 (2)
H140.56420.11730.64280.086*
O30.5629 (3)0.2210 (4)0.8388 (7)0.0747 (14)
O40.5534 (4)0.0457 (4)0.8904 (10)0.112 (2)
O50.5090 (2)0.3307 (3)0.4372 (7)0.0719 (14)
H5B0.49900.38900.37840.108*
H5C0.50140.27100.37490.108*
O60.4906 (3)0.1479 (4)0.2384 (9)0.115 (2)
H6B0.47800.09270.30420.173*
H6C0.52370.12100.17060.173*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0384 (4)0.0469 (4)0.0509 (5)0.0040 (4)0.0029 (6)0.0014 (6)
N10.052 (3)0.052 (3)0.054 (3)0.013 (2)0.016 (3)0.008 (3)
N20.039 (3)0.053 (3)0.049 (3)0.005 (2)0.002 (2)0.004 (3)
C10.094 (6)0.053 (4)0.056 (4)0.020 (4)0.035 (4)0.002 (4)
C20.129 (8)0.061 (4)0.073 (5)0.023 (5)0.050 (6)0.012 (4)
C30.096 (7)0.075 (6)0.103 (7)0.043 (5)0.049 (6)0.036 (6)
C40.062 (5)0.080 (5)0.078 (5)0.021 (4)0.030 (4)0.041 (4)
C50.039 (4)0.129 (7)0.112 (8)0.019 (4)0.019 (5)0.063 (8)
C60.050 (5)0.133 (9)0.106 (8)0.001 (5)0.002 (5)0.059 (7)
C70.043 (4)0.078 (5)0.078 (6)0.007 (4)0.011 (4)0.040 (4)
C80.075 (5)0.083 (5)0.081 (6)0.026 (4)0.036 (4)0.033 (4)
C90.082 (5)0.069 (4)0.066 (4)0.018 (4)0.029 (5)0.013 (5)
C100.069 (5)0.058 (4)0.053 (4)0.001 (4)0.005 (4)0.005 (3)
C110.045 (4)0.057 (4)0.051 (4)0.005 (3)0.003 (3)0.023 (3)
C120.040 (4)0.057 (4)0.068 (5)0.017 (3)0.011 (3)0.024 (3)
C130.047 (4)0.047 (4)0.058 (4)0.000 (3)0.007 (3)0.013 (3)
O10.047 (2)0.049 (2)0.065 (3)0.0018 (19)0.016 (2)0.008 (2)
O20.050 (3)0.052 (3)0.078 (3)0.004 (2)0.019 (2)0.008 (2)
C140.090 (6)0.048 (4)0.076 (5)0.019 (4)0.024 (4)0.015 (4)
O30.090 (4)0.058 (3)0.075 (4)0.005 (3)0.021 (3)0.002 (3)
O40.164 (6)0.056 (3)0.117 (5)0.008 (4)0.023 (5)0.024 (4)
O50.085 (4)0.048 (3)0.082 (3)0.000 (2)0.032 (3)0.001 (2)
O60.165 (6)0.085 (4)0.095 (5)0.030 (4)0.028 (4)0.033 (3)
Geometric parameters (Å, º) top
Mn1—O32.134 (5)C6—H6A0.9300
Mn1—O52.150 (4)C7—C81.405 (11)
Mn1—O2i2.161 (4)C7—C111.422 (9)
Mn1—O12.228 (4)C8—C91.353 (10)
Mn1—N22.246 (5)C8—H8A0.9300
Mn1—N12.295 (5)C9—C101.385 (9)
N1—C11.333 (8)C9—H9A0.9300
N1—C121.382 (8)C10—H10A0.9300
N2—C101.339 (9)C11—C121.435 (9)
N2—C111.346 (7)C13—O21.240 (7)
C1—C21.406 (10)C13—O11.245 (7)
C1—H1A0.9300C13—H130.9300
C2—C31.364 (11)O2—Mn1ii2.161 (4)
C2—H2A0.9300C14—O31.180 (8)
C3—C41.401 (12)C14—O41.240 (8)
C3—H3A0.9300C14—H140.9300
C4—C121.403 (9)O5—H5B0.8290
C4—C51.448 (12)O5—H5C0.8460
C5—C61.331 (13)O6—H6B0.8339
C5—H5A0.9300O6—H6C0.8420
C6—C71.414 (11)
O3—Mn1—O593.75 (19)C4—C5—H5A119.2
O3—Mn1—O2i89.28 (17)C5—C6—C7121.8 (9)
O5—Mn1—O2i95.71 (18)C5—C6—H6A119.1
O3—Mn1—O1172.92 (19)C7—C6—H6A119.1
O5—Mn1—O190.21 (16)C8—C7—C6124.3 (8)
O2i—Mn1—O184.49 (17)C8—C7—C11116.5 (7)
O3—Mn1—N292.55 (19)C6—C7—C11119.1 (8)
O5—Mn1—N2167.9 (2)C9—C8—C7121.0 (7)
O2i—Mn1—N294.70 (18)C9—C8—H8A119.5
O1—Mn1—N284.64 (16)C7—C8—H8A119.5
O3—Mn1—N191.92 (18)C8—C9—C10118.6 (8)
O5—Mn1—N195.6 (2)C8—C9—H9A120.7
O2i—Mn1—N1168.5 (2)C10—C9—H9A120.7
O1—Mn1—N193.53 (17)N2—C10—C9123.5 (7)
N2—Mn1—N173.86 (18)N2—C10—H10A118.3
C1—N1—C12119.0 (6)C9—C10—H10A118.3
C1—N1—Mn1127.6 (5)N2—C11—C7122.3 (7)
C12—N1—Mn1113.4 (4)N2—C11—C12118.6 (6)
C10—N2—C11118.2 (6)C7—C11—C12119.0 (6)
C10—N2—Mn1125.8 (4)N1—C12—C4121.7 (7)
C11—N2—Mn1116.0 (4)N1—C12—C11118.0 (6)
N1—C1—C2121.9 (8)C4—C12—C11120.3 (7)
N1—C1—H1A119.1O2—C13—O1125.0 (6)
C2—C1—H1A119.1O2—C13—H13117.5
C3—C2—C1119.3 (8)O1—C13—H13117.5
C3—C2—H2A120.3C13—O1—Mn1125.5 (4)
C1—C2—H2A120.3C13—O2—Mn1ii128.4 (4)
C2—C3—C4120.5 (8)O3—C14—O4127.0 (8)
C2—C3—H3A119.7O3—C14—H14116.5
C4—C3—H3A119.7O4—C14—H14116.5
C3—C4—C12117.6 (8)C14—O3—Mn1131.9 (5)
C3—C4—C5124.3 (8)Mn1—O5—H5B107.1
C12—C4—C5118.1 (8)Mn1—O5—H5C131.6
C6—C5—C4121.6 (8)H5B—O5—H5C118.0
C6—C5—H5A119.2H6B—O6—H6C100.5
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x+1, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O20.831.962.713 (5)150
O5—H5C···O60.851.762.601 (6)177
O6—H6B···O4iii0.831.882.693 (8)166
O6—H6C···O4iv0.832.132.864 (9)145
Symmetry codes: (iii) x+1, y, z1/2; (iv) x, y, z1.

Experimental details

Crystal data
Chemical formula[Mn(HCO2)2(C12H8N2)(H2O)]·H2O
Mr361.21
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)295
a, b, c (Å)19.260 (4), 12.161 (2), 6.5493 (13)
V3)1534.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.31 × 0.12 × 0.09
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.664, 0.791
No. of measured, independent and
observed [I > 2σ(I)] reflections
11493, 2644, 1921
Rint0.047
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.111, 1.20
No. of reflections2644
No. of parameters209
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.93
Absolute structureFlack (1983), 1165 Friedel pairs
Absolute structure parameter0.01 (4)

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O20.831.962.713 (5)150
O5—H5C···O60.851.762.601 (6)177
O6—H6B···O4i0.831.882.693 (8)166
O6—H6C···O4ii0.832.132.864 (9)145
Symmetry codes: (i) x+1, y, z1/2; (ii) x, y, z1.
 

Acknowledgements

This project was supported by the Scientific Research Fund of the Zhejiang Provincial Education Department (grant No. Y201017782) and the Scientific Research Fund of Ningbo University (grant No. XKL09078). Thanks are also extended to the K. C. Wong Magna Fund of Ningbo University.

References

First citationChen, Z. X., Xiang, S. C., Arman, H. D., Li, P., Tidrow, S., Zhao, D. Y. & Chen, B. L. (2010). Eur. J. Inorg. Chem. pp. 3745–3749.  CrossRef Google Scholar
First citationFarrusseng, D., Aguado, S. & Pinel, C. (2008). Angew. Chem. Int. Ed. 48, 7502–7503.  CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHagen, K. S., Naik, S. G., Huynh, B. H., Masello, A. & Christou, G. (2009). J. Am. Chem. Soc. 131, 7516–7517.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHu, K. L., Kurmoo, M., Wang, Z. M. & Gao, S. (2009). Chem. Eur. J. 15, 12050–12064.  CrossRef PubMed CAS Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationParedes-Gaecía, V. (2009). Inorg. Chem. 48, 4737–4742.  Web of Science PubMed Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationRobin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuan, P. L., Li, P. Z., Sun, Q. F., Liu, L. X., Gao, K., Liu, W. S., Lu, X. M. & Yu, S. Y. (2008). J. Mol. Struct. 890, 112–115  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds