organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Methyl-3-(naphthalen-1-yl)-3,3a,4,9b-tetra­hydro-1H-chromeno[4,3-c]isoxazole-3a-carbo­nitrile

aDepartment of Physics, Ethiraj College for Women (Autonomous), Chennai 600 008, India, bDepartment of Physics, R.K.M. Vivekananda College (Autonomous), Chennai 600 004, India, and cDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 7 March 2011; accepted 15 March 2011; online 23 March 2011)

In the title compound, C22H18N2O2, the pyran ring of the chromene unit is fused with an isoxazole ring, which adopts an N-envelope conformation with the N atom lying 1.3291 (14) Å from the mean plane of the remaining ring atoms [maximum deviation = 0.341 (2) Å]. The dihedral angle between the isoxazole and chromene units is 43.74 (8)° and that between the iosxazole ring and the naphthalene ring system is 58.82 (8)°. In the crystal, the molecules are linked by weak C—H⋯π inter­actions.

Related literature

For uses of isoxazole derivatives, see: Baraldi et al. (1987[Baraldi, P. G., Barco, A., Benetti, S., Pollini, G. P. & Simoni, D. (1987). Synthesis, pp. 857-869.]); Eddington et al. (2002[Eddington, N. D., Cox, D. S., Roberts, R. R., Butcher, R. J., Edafiogho, I. O., Stables, J. P., Cooke, N., Goodwin, A. M., Smith, C. A. & Scott, K. R. (2002). Eur. J. Chem. 37, 635-648.]); Caine (1993[Caine, B. (1993). Science, 260, 1814-1816.]). For related structures, see: Swaminathan et al. (2011a[Swaminathan, K., Sethusankar, K., Murugan, G. & Bakthadoss, M. (2011a). Acta Cryst. E67, o799.],b[Swaminathan, K., Sethusankar, K., Murugan, G. & Bakthadoss, M. (2011b). Acta Cryst. E67, o905.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the synthesis of isoxazolidines, see: Bakthadoss & Murugan (2010[Bakthadoss, M. & Murugan, G. (2010). Eur. J. Org. Chem. pp. 5825-5830.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18N2O2

  • Mr = 342.38

  • Monoclinic, P 21 /c

  • a = 10.622 (6) Å

  • b = 12.969 (7) Å

  • c = 12.423 (7) Å

  • β = 93.64 (3)°

  • V = 1707.9 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • 19983 measured reflections

  • 4684 independent reflections

  • 2767 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.176

  • S = 1.03

  • 4684 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11CCg4i 0.96 2.84 3.477 (2) 125
Symmetry code: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Isoxazole and its derivates are key intermediates for the preparation of products which mimic natural compounds (Baraldi et al., 1987). They have been shown to possess anticonvulsant activity (Eddington et al., 2002). Chromenopyrrole compounds are used in the treatment of impulsive disorders (Caine, 1993).

In the title compound (Fig. 1), the isoxazole rings adopts an N1-envelope conformation; N1 lies 1.3291 (14) Å from the mean plane formed by the rest of the ring atoms. The dihedral angle between the isoxazole and chromeno moiety is 43.74 (8)°. The dihedral angle between the isoxazole and naphthalene ring system is 58.82 (8)°, indicating a bisectional orientation. The pyran ring (O1/C1/C6-C9) adopts a half-chair conformation with puckering amplitudes (Cremer & Pople, 1975): Q = 0.480 (2) Å, θ = 129.2 (2)° and ϕ = 101.2 (2)°. The title compound exhibits structural similarities with other reported structures (Swaminathan et al., 2011a,b). The molecular structure is stabilized by C–H···π interactions (C11–H11C···Cg4 where Cg4 is the centroid of the six membered ring defined by the atoms C12–C17) (Table 1).

Related literature top

For uses of isoxazole derivatives, see: Baraldi et al. (1987); Eddington et al. (2002); Caine (1993). For related structures, see: Swaminathan et al. (2011a,b). For puckering parameters, see: Cremer & Pople (1975). For related literature, see: Bakthadoss & Murugan (2010).

Experimental top

A mixture of (E)-2-((2-formylnaphthalen-3-yloxy) -3-phenylacrylonitrile (1 mmol), N-methylhydroxyamine hydrochloride (1.1 mmol), pyridine (0.24 mL, 3 mmol) and ethanol (5 mL) was placed in a round bottom flask and refluxed for 6 h. After completion of the reaction as indicated by TLC the reaction mixture was concentrated under reduced pressure. The crude product was diluted with water (10 ml), dilute HCl (5 mL) and extracted with ethylacetate (20 ml). The organic layer was washed with brine solution (10 ml) and concentrated. The crude product was purified by column chromatography to provide the pure title compound as colourless solid. Crystals of the title compound were grown from its solution in methanol by slow evaporation at room temperature.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H = 0.93, 0.96, 0.97 and 0.98 Å for aryl, methyl, methylene and methyne type H-atoms, respectively, and refined in riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5 Ueq(methyl-C) and Uiso(H) = 1.2 Ueq(the rest of the C atoms).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound showing 30% probability displacement ellipsoids.
1-Methyl-3-(naphthalen-1-yl)-3,3a,4,9b-tetrahydro-1H- chromeno[4,3-c]isoxazole-3a-carbonitrile top
Crystal data top
C22H18N2O2F(000) = 720
Mr = 342.38Dx = 1.332 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4684 reflections
a = 10.622 (6) Åθ = 1.0–25.0°
b = 12.969 (7) ŵ = 0.09 mm1
c = 12.423 (7) ÅT = 293 K
β = 93.64 (3)°Block, colourless
V = 1707.9 (16) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2767 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 29.6°, θmin = 2.3°
ω and ϕ scansh = 1314
19983 measured reflectionsk = 1713
4684 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0917P)2]
where P = (Fo2 + 2Fc2)/3
4684 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C22H18N2O2V = 1707.9 (16) Å3
Mr = 342.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.622 (6) ŵ = 0.09 mm1
b = 12.969 (7) ÅT = 293 K
c = 12.423 (7) Å0.30 × 0.25 × 0.20 mm
β = 93.64 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2767 reflections with I > 2σ(I)
19983 measured reflectionsRint = 0.054
4684 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
4684 reflectionsΔρmin = 0.31 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.14265 (14)0.10109 (13)0.82608 (15)0.0435 (4)
C20.09651 (16)0.01485 (15)0.77009 (18)0.0565 (5)
H20.06780.02070.69810.068*
C30.09339 (19)0.07866 (16)0.8210 (2)0.0711 (7)
H30.06340.13640.78310.085*
C40.1342 (2)0.08753 (16)0.9273 (2)0.0764 (7)
H40.13170.15100.96190.092*
C50.17889 (19)0.00189 (15)0.98249 (19)0.0634 (5)
H50.20530.00821.05500.076*
C60.18571 (15)0.09400 (13)0.93287 (14)0.0445 (4)
C70.23100 (15)0.18759 (13)0.99341 (13)0.0423 (4)
H70.19470.18971.06400.051*
C80.20434 (14)0.28953 (12)0.93319 (12)0.0378 (4)
C90.22192 (14)0.27038 (13)0.81394 (12)0.0392 (4)
H9A0.20690.33400.77410.047*
H9B0.30820.24920.80510.047*
C100.30763 (15)0.36307 (13)0.98762 (13)0.0429 (4)
H100.26530.41501.02980.051*
C110.4298 (2)0.12639 (17)1.08402 (16)0.0642 (5)
H11A0.51720.14461.09570.096*
H11B0.42310.05721.05670.096*
H11C0.38960.13071.15090.096*
C120.39286 (14)0.41856 (12)0.91194 (13)0.0401 (4)
C130.51461 (16)0.38596 (14)0.90491 (16)0.0503 (4)
H130.54340.32930.94520.060*
C140.59706 (16)0.43657 (15)0.83792 (19)0.0583 (5)
H140.67970.41350.83490.070*
C150.55729 (17)0.51739 (15)0.77876 (18)0.0571 (5)
H150.61220.54930.73380.069*
C160.43293 (16)0.55539 (13)0.78330 (15)0.0478 (4)
C170.34944 (14)0.50587 (12)0.85222 (14)0.0407 (4)
C180.22757 (16)0.54867 (14)0.85861 (17)0.0520 (5)
H180.17190.51880.90430.062*
C190.19061 (18)0.63210 (15)0.7997 (2)0.0651 (6)
H190.11070.65980.80660.078*
C200.2715 (2)0.67751 (17)0.7281 (2)0.0702 (6)
H200.24380.73290.68540.084*
C210.3899 (2)0.64047 (16)0.72136 (19)0.0632 (5)
H210.44370.67180.67500.076*
C220.07561 (16)0.32612 (14)0.94773 (14)0.0465 (4)
N10.36917 (13)0.19627 (11)1.00702 (11)0.0466 (4)
N20.02444 (16)0.35439 (15)0.95782 (16)0.0724 (5)
O10.13851 (10)0.19321 (9)0.77127 (9)0.0466 (3)
O20.37728 (12)0.29730 (9)1.05968 (9)0.0549 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0362 (8)0.0388 (10)0.0562 (10)0.0010 (7)0.0092 (7)0.0039 (8)
C20.0412 (9)0.0505 (12)0.0780 (13)0.0054 (8)0.0061 (8)0.0154 (10)
C30.0565 (12)0.0434 (13)0.114 (2)0.0055 (9)0.0087 (12)0.0151 (13)
C40.0777 (14)0.0374 (12)0.115 (2)0.0021 (10)0.0170 (14)0.0093 (13)
C50.0695 (12)0.0467 (12)0.0752 (14)0.0013 (10)0.0127 (10)0.0105 (10)
C60.0466 (9)0.0365 (9)0.0517 (10)0.0020 (7)0.0135 (7)0.0023 (8)
C70.0519 (9)0.0399 (10)0.0359 (8)0.0053 (7)0.0096 (6)0.0038 (7)
C80.0444 (8)0.0361 (9)0.0336 (7)0.0011 (7)0.0071 (6)0.0016 (6)
C90.0431 (8)0.0393 (9)0.0354 (8)0.0055 (7)0.0042 (6)0.0016 (7)
C100.0529 (9)0.0391 (9)0.0362 (8)0.0040 (7)0.0003 (7)0.0069 (7)
C110.0750 (13)0.0671 (14)0.0495 (10)0.0200 (11)0.0032 (9)0.0119 (10)
C120.0416 (8)0.0352 (9)0.0432 (8)0.0020 (7)0.0001 (6)0.0135 (7)
C130.0460 (9)0.0395 (10)0.0642 (11)0.0005 (8)0.0052 (8)0.0161 (9)
C140.0360 (9)0.0490 (12)0.0904 (15)0.0050 (8)0.0080 (9)0.0267 (11)
C150.0482 (10)0.0473 (11)0.0779 (14)0.0165 (9)0.0190 (9)0.0205 (10)
C160.0469 (9)0.0389 (10)0.0581 (10)0.0141 (8)0.0074 (7)0.0119 (8)
C170.0406 (8)0.0335 (9)0.0481 (9)0.0050 (7)0.0029 (7)0.0130 (7)
C180.0459 (9)0.0388 (10)0.0722 (12)0.0047 (8)0.0100 (8)0.0003 (9)
C190.0521 (11)0.0408 (11)0.1023 (18)0.0000 (9)0.0031 (10)0.0085 (11)
C200.0728 (13)0.0424 (12)0.0946 (17)0.0101 (10)0.0002 (11)0.0163 (12)
C210.0678 (12)0.0468 (12)0.0761 (14)0.0185 (10)0.0128 (10)0.0061 (10)
C220.0514 (10)0.0411 (10)0.0484 (9)0.0018 (8)0.0144 (7)0.0042 (8)
N10.0569 (8)0.0431 (8)0.0391 (7)0.0073 (7)0.0033 (6)0.0012 (6)
N20.0580 (10)0.0734 (13)0.0884 (14)0.0138 (9)0.0257 (9)0.0095 (10)
O10.0499 (7)0.0446 (7)0.0446 (6)0.0111 (5)0.0027 (5)0.0023 (5)
O20.0737 (8)0.0497 (8)0.0392 (6)0.0062 (6)0.0134 (6)0.0071 (6)
Geometric parameters (Å, º) top
C1—O11.374 (2)C11—N11.440 (2)
C1—C61.379 (3)C11—H11A0.9600
C1—C21.390 (3)C11—H11B0.9600
C2—C31.369 (3)C11—H11C0.9600
C2—H20.9300C12—C131.369 (2)
C3—C41.369 (4)C12—C171.415 (2)
C3—H30.9300C13—C141.408 (3)
C4—C51.374 (3)C13—H130.9300
C4—H40.9300C14—C151.333 (3)
C5—C61.392 (3)C14—H140.9300
C5—H50.9300C15—C161.414 (3)
C6—C71.491 (2)C15—H150.9300
C7—N11.471 (2)C16—C211.405 (3)
C7—C81.537 (2)C16—C171.424 (2)
C7—H70.9800C17—C181.415 (2)
C8—C221.469 (2)C18—C191.351 (3)
C8—C91.525 (2)C18—H180.9300
C8—C101.574 (2)C19—C201.405 (3)
C9—O11.4171 (19)C19—H190.9300
C9—H9A0.9700C20—C211.354 (3)
C9—H9B0.9700C20—H200.9300
C10—O21.411 (2)C21—H210.9300
C10—C121.526 (2)C22—N21.139 (2)
C10—H100.9800N1—O21.4647 (19)
O1—C1—C6122.21 (16)N1—C11—H11A109.5
O1—C1—C2116.89 (17)N1—C11—H11B109.5
C6—C1—C2120.85 (18)H11A—C11—H11B109.5
C3—C2—C1120.0 (2)N1—C11—H11C109.5
C3—C2—H2120.0H11A—C11—H11C109.5
C1—C2—H2120.0H11B—C11—H11C109.5
C2—C3—C4120.3 (2)C13—C12—C17119.45 (16)
C2—C3—H3119.8C13—C12—C10119.56 (16)
C4—C3—H3119.8C17—C12—C10120.94 (14)
C3—C4—C5119.5 (2)C12—C13—C14121.28 (18)
C3—C4—H4120.3C12—C13—H13119.4
C5—C4—H4120.3C14—C13—H13119.4
C4—C5—C6121.8 (2)C15—C14—C13120.33 (17)
C4—C5—H5119.1C15—C14—H14119.8
C6—C5—H5119.1C13—C14—H14119.8
C1—C6—C5117.54 (18)C14—C15—C16121.06 (18)
C1—C6—C7120.50 (15)C14—C15—H15119.5
C5—C6—C7121.87 (17)C16—C15—H15119.5
N1—C7—C6114.07 (13)C21—C16—C15121.58 (17)
N1—C7—C898.15 (12)C21—C16—C17119.37 (16)
C6—C7—C8114.28 (14)C15—C16—C17119.05 (18)
N1—C7—H7109.9C12—C17—C18123.59 (15)
C6—C7—H7109.9C12—C17—C16118.78 (15)
C8—C7—H7109.9C18—C17—C16117.61 (16)
C22—C8—C9110.13 (13)C19—C18—C17121.28 (17)
C22—C8—C7111.24 (13)C19—C18—H18119.4
C9—C8—C7107.62 (13)C17—C18—H18119.4
C22—C8—C10112.35 (14)C18—C19—C20120.70 (19)
C9—C8—C10113.02 (13)C18—C19—H19119.7
C7—C8—C10102.15 (13)C20—C19—H19119.7
O1—C9—C8111.48 (12)C21—C20—C19119.9 (2)
O1—C9—H9A109.3C21—C20—H20120.1
C8—C9—H9A109.3C19—C20—H20120.1
O1—C9—H9B109.3C20—C21—C16121.04 (18)
C8—C9—H9B109.3C20—C21—H21119.5
H9A—C9—H9B108.0C16—C21—H21119.5
O2—C10—C12111.60 (14)N2—C22—C8179.3 (2)
O2—C10—C8103.26 (14)C11—N1—O2104.78 (14)
C12—C10—C8116.47 (13)C11—N1—C7115.42 (15)
O2—C10—H10108.4O2—N1—C798.62 (12)
C12—C10—H10108.4C1—O1—C9115.41 (13)
C8—C10—H10108.4C10—O2—N1104.11 (11)
O1—C1—C2—C3177.56 (15)C8—C10—C12—C1777.62 (19)
C6—C1—C2—C30.0 (3)C17—C12—C13—C141.1 (2)
C1—C2—C3—C40.8 (3)C10—C12—C13—C14178.53 (15)
C2—C3—C4—C50.3 (3)C12—C13—C14—C150.6 (3)
C3—C4—C5—C60.9 (3)C13—C14—C15—C161.2 (3)
O1—C1—C6—C5176.25 (14)C14—C15—C16—C21179.99 (18)
C2—C1—C6—C51.2 (2)C14—C15—C16—C170.2 (3)
O1—C1—C6—C70.5 (2)C13—C12—C17—C18176.50 (16)
C2—C1—C6—C7177.92 (15)C10—C12—C17—C180.9 (2)
C4—C5—C6—C11.7 (3)C13—C12—C17—C162.1 (2)
C4—C5—C6—C7178.34 (18)C10—C12—C17—C16179.54 (14)
C1—C6—C7—N1102.19 (17)C21—C16—C17—C12178.31 (16)
C5—C6—C7—N181.2 (2)C15—C16—C17—C121.5 (2)
C1—C6—C7—C89.6 (2)C21—C16—C17—C183.0 (2)
C5—C6—C7—C8166.94 (15)C15—C16—C17—C18177.18 (16)
N1—C7—C8—C22155.46 (13)C12—C17—C18—C19179.89 (18)
C6—C7—C8—C2283.44 (17)C16—C17—C18—C191.5 (3)
N1—C7—C8—C983.82 (14)C17—C18—C19—C201.5 (3)
C6—C7—C8—C937.28 (17)C18—C19—C20—C213.0 (4)
N1—C7—C8—C1035.39 (14)C19—C20—C21—C161.4 (3)
C6—C7—C8—C10156.49 (13)C15—C16—C21—C20178.6 (2)
C22—C8—C9—O161.53 (18)C17—C16—C21—C201.6 (3)
C7—C8—C9—O159.89 (17)C6—C7—N1—C1173.38 (19)
C10—C8—C9—O1171.90 (13)C8—C7—N1—C11165.36 (14)
C22—C8—C10—O2122.56 (14)C6—C7—N1—O2175.66 (12)
C9—C8—C10—O2112.06 (14)C8—C7—N1—O254.40 (13)
C7—C8—C10—O23.27 (15)C6—C1—O1—C923.1 (2)
C22—C8—C10—C12114.77 (15)C2—C1—O1—C9159.34 (14)
C9—C8—C10—C1210.62 (19)C8—C9—O1—C153.94 (18)
C7—C8—C10—C12125.94 (14)C12—C10—O2—N194.92 (14)
O2—C10—C12—C1313.2 (2)C8—C10—O2—N130.93 (15)
C8—C10—C12—C13104.98 (17)C11—N1—O2—C10174.85 (14)
O2—C10—C12—C17164.17 (13)C7—N1—O2—C1055.57 (15)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11C···Cg4i0.962.843.477 (2)125
Symmetry code: (i) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC22H18N2O2
Mr342.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.622 (6), 12.969 (7), 12.423 (7)
β (°) 93.64 (3)
V3)1707.9 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19983, 4684, 2767
Rint0.054
(sin θ/λ)max1)0.695
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.176, 1.03
No. of reflections4684
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.31

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11C···Cg4i0.962.843.477 (2)125
Symmetry code: (i) x, y1/2, z1/2.
 

Acknowledgements

RG and KS are grateful to Dr Babu Varghese, SAIF, IIT, Madras, for help with the data collection.

References

First citationBakthadoss, M. & Murugan, G. (2010). Eur. J. Org. Chem. pp. 5825–5830.  Web of Science CSD CrossRef Google Scholar
First citationBaraldi, P. G., Barco, A., Benetti, S., Pollini, G. P. & Simoni, D. (1987). Synthesis, pp. 857–869.  CrossRef Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaine, B. (1993). Science, 260, 1814–1816.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEddington, N. D., Cox, D. S., Roberts, R. R., Butcher, R. J., Edafiogho, I. O., Stables, J. P., Cooke, N., Goodwin, A. M., Smith, C. A. & Scott, K. R. (2002). Eur. J. Chem. 37, 635–648.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwaminathan, K., Sethusankar, K., Murugan, G. & Bakthadoss, M. (2011a). Acta Cryst. E67, o799.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSwaminathan, K., Sethusankar, K., Murugan, G. & Bakthadoss, M. (2011b). Acta Cryst. E67, o905.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds