organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[(m-phenyl­enedi­methyl­ene)­di­ammonium] tetra­deca­borate

aState Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: liangyunxiao@nbu.edu.cn

(Received 29 September 2008; accepted 14 October 2008; online 18 October 2008)

The title compound 2C8H14N22+·[B14O20(OH)6]4−, contains diprotonated C8H14N22+ cations and centrosymmetric tetra­deca­borate anions. The crystal structure is stabilized by O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For background on the importance of borate compounds, see: Chen et al. (1995[Chen, C., Wang, Y., Wu, B., Wu, K., Zeng, W. & Yu, L. (1995). Nature (London), 373, 322-324.]); Grice et al. (1999[Grice, J. D., Burns, P. C. & Hawthorne, F. C. (1999). Can. Mineral. 37, 731-762.]). For previous work on boron oxoanions, see: Liu et al. (2006[Liu, Z. H., Li, L. Q. & Zhang, W. J. (2006). Inorg. Chem. 45, 1430-1432.]); Pan et al. (2007[Pan, C. Y., Wang, G. M., Zheng, S. T. & Yang, G. Y. (2007). Z. Anorg. Allg. Chem. 633, 336-340.]); Grice et al. (1999[Grice, J. D., Burns, P. C. & Hawthorne, F. C. (1999). Can. Mineral. 37, 731-762.]); Schubert et al. (2000[Schubert, D. M., Visi, M. Z. & Knobler, C. B. (2000). Inorg. Chem. 39, 2250-2251.]); Touboul et al. (2003[Touboul, M., Penin, N. & Nowogrocki, G. (2003). Solid State Sci. 5, 1327-1342.]); Burns (1995[Burns, P. C. (1995). Can. Mineral. 33, 1167-1176.]).

[Scheme 1]

Experimental

Crystal data
  • 2C8H14N22+·B14H6O264−

  • Mr = 849.81

  • Triclinic, [P \overline 1]

  • a = 9.1025 (18) Å

  • b = 10.293 (2) Å

  • c = 10.942 (2) Å

  • α = 109.68 (3)°

  • β = 108.24 (3)°

  • γ = 102.19 (3)°

  • V = 857.4 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 295 (2) K

  • 0.34 × 0.26 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.964, Tmax = 0.973

  • 6803 measured reflections

  • 3009 independent reflections

  • 2002 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.128

  • S = 1.24

  • 3009 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10A⋯O2i 0.82 1.98 2.784 (2) 168
O11—H11A⋯O3ii 0.82 1.84 2.659 (2) 179
O13—H13A⋯O11iii 0.82 2.00 2.815 (2) 173
N1—H1A⋯O7 0.89 2.08 2.863 (2) 146
N1—H1B⋯O13iv 0.89 1.98 2.850 (2) 166
N1—H1C⋯O6v 0.89 2.20 2.916 (2) 137
N1—H1C⋯O1v 0.89 2.54 3.394 (2) 161
N2—H2A⋯O4vi 0.89 1.97 2.822 (2) 159
N2—H2B⋯O1v 0.89 1.99 2.877 (2) 173
N2—H2B⋯O9v 0.89 2.55 3.052 (2) 116
N2—H2C⋯O12vii 0.89 2.19 3.067 (2) 168
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+2; (iii) -x+2, -y+1, -z+2; (iv) x-1, y, z; (v) -x+1, -y+1, -z+1; (vi) x-1, y, z-1; (vii) -x, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Borate compounds have considerable mineralogical and industrial importance (Chen et al., 1995; Grice et al., 1999). Boron atoms form strong bonds with oxygen atoms not only in trigonal planar BO3, but also in tetrahedral BO4 groups. These BO3 and BO4 groups may be linked together by sharing common oxygen to form isolated rings and cages or extended chains, sheets, and networks. So far, a number of isolated boron oxoanions have been found in mineral and synthetic borates, such as [B(OH)4]-, [B2O(OH)6]2-, [B3O3(OH)4]-, [B4O5(OH)4]2-, [B5O6(OH)4]-, [B6O7(OH)6]2- (Grice et al., 1999; Touboul et al., 2003), [B7O9(OH)5]2- (Liu et al., 2006; Pan et al., 2007), [B9O12(OH)6]3- (Schubert et al., 2000), and [B14O20(OH)6]4- (Liu et al., 2006; Pan et al., 2007). Compared with metal borates, the synthesis of organically modified nonmetal borates was less well explored in the past decades. Herein, we describe the synthesis and crystal structure of a new nonmetal borate with [B14O20(OH)6]4- as polyanions.

As shown in Fig. 1, the title compound consists of isolated [B14O20(OH)6]4- polyborate anions and [C8H14N2]2+ cations. The [B14O20(OH)6]4- borate anion is composed of four BO4, four BO3, and six BO2(OH) groups (Burns, 1995). It can also be seen as two [B7O9(OH)5]2- clusters combined with each other through the dehydration of four hydroxyl groups. Each [B7O9(OH)5]2- group contains three B3O3 cycles held together via two common BO4 tetrahedra. The B—O bond lengths and O—B—O bond angles are in the range of 1.332 (4)–1.509 (4) Å and 105.9 (3)–124.5 (3)° (Table 1), which are in good agreement with other borates reported previously (Liu et al., 2006; Pan et al., 2007).

In the present instance, the isolated tetradecaborates anions are linked together through hydrogen bonds: O10—H10A···O2, O11—H11A···O3 (Fig. 2), forming a two-dimensional sheetlike structure. The adjacent borate sheets are further linked together by strong H-bonding interactions [O13—H13A···O11] to form a three-dimensional network (Fig. 3). The hydrogen bonds are listed in Table 2.

Related literature top

For background on the importance of borate compounds, see: Chen et al. (1995); Grice et al. (1999). For previous work on boron oxoanions, see: Liu et al. (2006); Pan et al. (2007); Grice et al. (1999); Schubert et al. (2000); Touboul et al. (2003); Burns (1995). [Please check added text]

Experimental top

The title compound was obtained by the reaction of H3BO3 and 1,3-Bis(aminomethyl)benzene under mild solvothermal conditions. Typically, a mixture of H3BO3 (0.9882 g), 1,3-Bis(aminomethyl)benzene (3 ml) was stirred at room temperature. The final mixture was sealed in a Teflon-lined autoclave, heated to 443 K at a rate of 10 K/h, kept at 443 K for 4 days and then cooled to room temperature at a rate of 5 K/h. Colorless transparent block-like crystals were collected and dried in air.

Refinement top

All H atoms were positioned geometrically and refined as riding model [O—H = 0.82 Å, N—H = 0.89 Å, C—Haromatic = 0.93 Å, C—H2 = 0.97 Å, and with Uiso(H) = 1.5Ueq(O), Uiso(H) = 1.5Ueq(N), Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: Crystal Structure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The crystal structure of [(C8H14N2)]2[B14O20(OH)6]: (a) [B14O20(OH)6]4-; (b) [(C8H14N2)]2+, drawn at the 50% probability level. [Symmetry codes: (i) -x+1, -y+1, -z+1.]
[Figure 2] Fig. 2. Formation of the two-dimensional sheet from the [B14O20(OH)6]4- polyanions. Hydrogen bonds are indicated by dashed lines.
[Figure 3] Fig. 3. View of the diprotonated of organic amines in the inorganic borate network along a axis.
Bis[(m-phenylenedimethylene)diammonium] tetradecaborate top
Crystal data top
2C8H14N22+·B14H6O264Z = 1
Mr = 849.81F(000) = 436
Triclinic, P1Dx = 1.646 Mg m3
Hall symbol: -P1Mo Kα radiation, λ = 0.71073 Å
a = 9.1025 (18) ÅCell parameters from 4940 reflections
b = 10.293 (2) Åθ = 6.7–54.9°
c = 10.942 (2) ŵ = 0.14 mm1
α = 109.68 (3)°T = 295 K
β = 108.24 (3)°Block, colourless
γ = 102.19 (3)°0.34 × 0.26 × 0.18 mm
V = 857.4 (5) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3009 independent reflections
Radiation source: fine-focus sealed tube2002 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 25.0°, θmin = 3.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.964, Tmax = 0.973k = 1212
6803 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0299P)2 + 1.2547P]
where P = (Fo2 + 2Fc2)/3
S = 1.24(Δ/σ)max < 0.001
3009 reflectionsΔρmax = 0.42 e Å3
272 parametersΔρmin = 0.46 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (2)
Crystal data top
2C8H14N22+·B14H6O264γ = 102.19 (3)°
Mr = 849.81V = 857.4 (5) Å3
Triclinic, P1Z = 1
a = 9.1025 (18) ÅMo Kα radiation
b = 10.293 (2) ŵ = 0.14 mm1
c = 10.942 (2) ÅT = 295 K
α = 109.68 (3)°0.34 × 0.26 × 0.18 mm
β = 108.24 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3009 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2002 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.973Rint = 0.023
6803 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.24Δρmax = 0.42 e Å3
3009 reflectionsΔρmin = 0.46 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.6460 (5)0.4668 (4)0.7888 (4)0.0240 (8)
B20.7413 (4)0.3345 (4)0.6060 (4)0.0222 (8)
B30.5338 (4)0.1936 (4)0.6602 (4)0.0247 (8)
B40.6535 (4)0.6248 (4)1.0187 (4)0.0209 (7)
B50.4617 (5)0.6104 (4)0.8040 (4)0.0233 (8)
B60.7437 (4)0.3478 (4)0.3829 (4)0.0225 (8)
B70.9709 (5)0.3173 (4)0.5343 (4)0.0252 (8)
O10.7649 (3)0.4597 (2)0.7304 (2)0.0238 (5)
O20.6220 (3)0.1961 (2)0.5811 (2)0.0279 (5)
O30.5410 (3)0.3195 (2)0.7601 (2)0.0266 (5)
O40.7324 (3)0.5555 (2)0.9474 (2)0.0231 (5)
O50.5160 (3)0.6519 (2)0.9489 (2)0.0259 (5)
O60.5330 (3)0.5377 (2)0.7283 (2)0.0248 (5)
O70.6718 (3)0.3576 (2)0.4736 (2)0.0263 (5)
O80.8946 (3)0.3301 (3)0.4095 (2)0.0297 (6)
O90.9009 (3)0.3166 (2)0.6244 (2)0.0260 (5)
O100.4275 (3)0.0652 (3)0.6413 (3)0.0447 (7)
H10A0.42250.00420.57330.067*
O110.7074 (3)0.6690 (2)1.1630 (2)0.0269 (5)
H11A0.62970.67221.18520.040*
O120.3292 (3)0.6490 (3)0.7475 (2)0.0284 (5)
O131.1239 (3)0.3064 (3)0.5617 (2)0.0374 (6)
H13A1.16590.31470.64330.056*
N10.3291 (3)0.3057 (3)0.4112 (3)0.0329 (7)
H1A0.43530.32870.46540.049*
H1B0.27470.32280.46620.049*
H1C0.32030.36050.36330.049*
N20.1153 (3)0.4082 (3)0.0950 (3)0.0320 (7)
H2A0.13720.46670.05310.048*
H2B0.00780.44270.15130.048*
H2C0.17300.40600.14710.048*
C10.0788 (4)0.1079 (4)0.2176 (4)0.0316 (8)
C20.0378 (4)0.1765 (4)0.1291 (4)0.0313 (8)
H2D0.12140.23500.11850.038*
C30.1245 (4)0.1600 (4)0.0564 (4)0.0310 (8)
C40.2492 (4)0.0650 (4)0.0667 (4)0.0380 (9)
H4A0.35930.05050.01650.046*
C50.2107 (5)0.0074 (4)0.1508 (4)0.0452 (10)
H5A0.29490.07130.15630.054*
C60.0475 (5)0.0143 (4)0.2272 (4)0.0387 (9)
H6A0.02200.03370.28500.046*
C70.2573 (5)0.1467 (4)0.3083 (4)0.0413 (9)
H7A0.26810.08650.36000.050*
H7B0.31660.12740.24830.050*
C80.1624 (5)0.2555 (4)0.0168 (4)0.0373 (9)
H8A0.27940.21720.07890.045*
H8B0.10060.25700.07440.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0293 (19)0.027 (2)0.0191 (19)0.0131 (16)0.0134 (16)0.0092 (16)
B20.0212 (18)0.025 (2)0.0231 (19)0.0095 (15)0.0124 (16)0.0104 (16)
B30.0267 (19)0.024 (2)0.024 (2)0.0084 (16)0.0132 (16)0.0098 (17)
B40.0219 (18)0.0198 (18)0.0207 (19)0.0057 (14)0.0104 (15)0.0081 (15)
B50.0287 (19)0.0248 (19)0.0197 (19)0.0128 (16)0.0115 (16)0.0101 (16)
B60.0245 (19)0.0242 (19)0.0179 (18)0.0128 (15)0.0081 (15)0.0060 (15)
B70.0265 (19)0.032 (2)0.0162 (18)0.0142 (17)0.0085 (16)0.0072 (16)
O10.0236 (11)0.0247 (12)0.0230 (12)0.0071 (9)0.0145 (10)0.0067 (10)
O20.0325 (12)0.0254 (12)0.0273 (13)0.0089 (10)0.0197 (11)0.0073 (10)
O30.0327 (13)0.0219 (12)0.0295 (13)0.0083 (10)0.0211 (11)0.0095 (10)
O40.0253 (11)0.0272 (12)0.0160 (11)0.0119 (9)0.0086 (9)0.0071 (10)
O50.0291 (12)0.0354 (13)0.0188 (12)0.0186 (10)0.0117 (10)0.0119 (10)
O60.0292 (12)0.0320 (13)0.0190 (11)0.0182 (10)0.0119 (10)0.0113 (10)
O70.0251 (12)0.0394 (14)0.0243 (12)0.0182 (10)0.0145 (10)0.0168 (11)
O80.0280 (12)0.0458 (15)0.0253 (13)0.0196 (11)0.0161 (10)0.0183 (11)
O90.0248 (12)0.0392 (14)0.0237 (12)0.0175 (10)0.0153 (10)0.0157 (11)
O100.0624 (17)0.0251 (14)0.0473 (16)0.0051 (12)0.0399 (15)0.0069 (12)
O110.0280 (12)0.0377 (14)0.0196 (12)0.0158 (10)0.0130 (10)0.0123 (10)
O120.0315 (13)0.0418 (14)0.0240 (12)0.0234 (11)0.0155 (10)0.0178 (11)
O130.0271 (13)0.0688 (18)0.0272 (13)0.0275 (13)0.0146 (11)0.0238 (13)
N10.0276 (15)0.0430 (18)0.0291 (16)0.0123 (13)0.0137 (13)0.0152 (14)
N20.0338 (16)0.0351 (17)0.0316 (16)0.0160 (13)0.0139 (13)0.0170 (14)
C10.0338 (19)0.0238 (18)0.0276 (19)0.0091 (15)0.0082 (15)0.0054 (15)
C20.0323 (19)0.0286 (19)0.0274 (19)0.0091 (15)0.0107 (16)0.0085 (15)
C30.0325 (19)0.0279 (19)0.0270 (19)0.0117 (15)0.0102 (16)0.0072 (15)
C40.0290 (19)0.029 (2)0.045 (2)0.0075 (16)0.0120 (17)0.0087 (18)
C50.044 (2)0.033 (2)0.054 (3)0.0065 (18)0.024 (2)0.014 (2)
C60.050 (2)0.028 (2)0.043 (2)0.0132 (17)0.0213 (19)0.0194 (18)
C70.041 (2)0.037 (2)0.038 (2)0.0188 (18)0.0109 (18)0.0096 (18)
C80.041 (2)0.038 (2)0.0250 (19)0.0164 (17)0.0063 (16)0.0113 (17)
Geometric parameters (Å, º) top
B1—O11.421 (4)O13—H13A0.8200
B1—O31.480 (4)N1—C71.489 (5)
B1—O41.496 (4)N1—H1A0.8900
B1—O61.499 (4)N1—H1B0.8900
B2—O11.442 (4)N1—H1C0.8900
B2—O91.463 (4)N2—C81.497 (4)
B2—O21.477 (4)N2—H2A0.8900
B2—O71.509 (4)N2—H2B0.8900
B3—O21.354 (4)N2—H2C0.8900
B3—O31.358 (4)C1—C21.385 (5)
B3—O101.370 (4)C1—C61.391 (5)
B4—O41.351 (4)C1—C71.495 (5)
B4—O111.370 (4)C2—C31.383 (5)
B4—O51.386 (4)C2—H2D0.9300
B5—O61.338 (4)C3—C41.394 (5)
B5—O121.377 (4)C3—C81.492 (5)
B5—O51.380 (4)C4—C51.377 (6)
B6—O71.338 (4)C4—H4A0.9300
B6—O81.377 (4)C5—C61.383 (5)
B6—O12i1.388 (4)C5—H5A0.9300
B7—O91.332 (4)C6—H6A0.9300
B7—O131.368 (4)C7—H7A0.9700
B7—O81.388 (4)C7—H7B0.9700
O10—H10A0.8200C8—H8A0.9700
O11—H11A0.8200C8—H8B0.9700
O12—B6i1.388 (4)
O1—B1—O3112.6 (3)C7—N1—H1B109.5
O1—B1—O4109.6 (3)H1A—N1—H1B109.5
O3—B1—O4107.5 (2)C7—N1—H1C109.5
O1—B1—O6111.1 (3)H1A—N1—H1C109.5
O3—B1—O6107.2 (3)H1B—N1—H1C109.5
O4—B1—O6108.6 (2)C8—N2—H2A109.5
O1—B2—O9108.6 (3)C8—N2—H2B109.5
O1—B2—O2112.9 (2)H2A—N2—H2B109.5
O9—B2—O2109.0 (3)C8—N2—H2C109.5
O1—B2—O7110.2 (3)H2A—N2—H2C109.5
O9—B2—O7110.1 (2)H2B—N2—H2C109.5
O2—B2—O7105.9 (3)C2—C1—C6118.9 (3)
O2—B3—O3121.8 (3)C2—C1—C7118.6 (3)
O2—B3—O10122.5 (3)C6—C1—C7122.2 (3)
O3—B3—O10115.7 (3)C3—C2—C1121.5 (3)
O4—B4—O11120.4 (3)C3—C2—H2D119.2
O4—B4—O5121.5 (3)C1—C2—H2D119.2
O11—B4—O5118.1 (3)C2—C3—C4118.6 (3)
O6—B5—O12124.5 (3)C2—C3—C8120.2 (3)
O6—B5—O5121.6 (3)C4—C3—C8120.9 (3)
O12—B5—O5113.8 (3)C5—C4—C3120.5 (3)
O7—B6—O8122.9 (3)C5—C4—H4A119.8
O7—B6—O12i122.9 (3)C3—C4—H4A119.8
O8—B6—O12i114.2 (3)C4—C5—C6120.3 (4)
O9—B7—O13120.9 (3)C4—C5—H5A119.8
O9—B7—O8122.5 (3)C6—C5—H5A119.8
O13—B7—O8116.6 (3)C5—C6—C1120.1 (3)
B1—O1—B2123.5 (3)C5—C6—H6A120.0
B3—O2—B2122.1 (3)C1—C6—H6A120.0
B3—O3—B1121.8 (2)N1—C7—C1109.5 (3)
B4—O4—B1119.7 (3)N1—C7—H7A109.8
B5—O5—B4118.9 (2)C1—C7—H7A109.8
B5—O6—B1120.7 (2)N1—C7—H7B109.8
B6—O7—B2122.4 (2)C1—C7—H7B109.8
B6—O8—B7117.6 (3)H7A—C7—H7B108.2
B7—O9—B2124.2 (3)C3—C8—N2108.3 (3)
B3—O10—H10A109.5C3—C8—H8A110.0
B4—O11—H11A109.5N2—C8—H8A110.0
B5—O12—B6i132.5 (3)C3—C8—H8B110.0
B7—O13—H13A109.5N2—C8—H8B110.0
C7—N1—H1A109.5H8A—C8—H8B108.4
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10A···O2ii0.821.982.784 (2)168
O11—H11A···O3iii0.821.842.659 (2)179
O13—H13A···O11iv0.822.002.815 (2)173
N1—H1A···O70.892.082.863 (2)146
N1—H1B···O13v0.891.982.850 (2)166
N1—H1C···O6i0.892.202.916 (2)137
N1—H1C···O1i0.892.543.394 (2)161
N2—H2A···O4vi0.891.972.822 (2)159
N2—H2B···O1i0.891.992.877 (2)173
N2—H2B···O9i0.892.553.052 (2)116
N2—H2C···O12vii0.892.193.067 (2)168
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1, z+2; (iv) x+2, y+1, z+2; (v) x1, y, z; (vi) x1, y, z1; (vii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula2C8H14N22+·B14H6O264
Mr849.81
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.1025 (18), 10.293 (2), 10.942 (2)
α, β, γ (°)109.68 (3), 108.24 (3), 102.19 (3)
V3)857.4 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.34 × 0.26 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.964, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
6803, 3009, 2002
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.128, 1.24
No. of reflections3009
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.46

Computer programs: RAPID-AUTO (Rigaku, 1998), Crystal Structure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10A···O2i0.821.982.784 (2)168
O11—H11A···O3ii0.821.842.659 (2)179
O13—H13A···O11iii0.822.002.815 (2)173
N1—H1A···O70.892.082.863 (2)146
N1—H1B···O13iv0.891.982.850 (2)166
N1—H1C···O6v0.892.202.916 (2)137
N1—H1C···O1v0.892.543.394 (2)161
N2—H2A···O4vi0.891.972.822 (2)159
N2—H2B···O1v0.891.992.877 (2)173
N2—H2B···O9v0.892.553.052 (2)116
N2—H2C···O12vii0.892.193.067 (2)168
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+2; (iii) x+2, y+1, z+2; (iv) x1, y, z; (v) x+1, y+1, z+1; (vi) x1, y, z1; (vii) x, y+1, z+1.
 

Acknowledgements

This work was supported by the Ningbo Natural Science Foundation (grant No. 2007A610022) and the K. C. Wong Magna Fund of Ningbo University.

References

First citationBurns, P. C. (1995). Can. Mineral. 33, 1167–1176.  CAS Google Scholar
First citationChen, C., Wang, Y., Wu, B., Wu, K., Zeng, W. & Yu, L. (1995). Nature (London), 373, 322–324.  CrossRef CAS Web of Science Google Scholar
First citationGrice, J. D., Burns, P. C. & Hawthorne, F. C. (1999). Can. Mineral. 37, 731–762.  CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL–5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLiu, Z. H., Li, L. Q. & Zhang, W. J. (2006). Inorg. Chem. 45, 1430–1432.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPan, C. Y., Wang, G. M., Zheng, S. T. & Yang, G. Y. (2007). Z. Anorg. Allg. Chem. 633, 336–340.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSchubert, D. M., Visi, M. Z. & Knobler, C. B. (2000). Inorg. Chem. 39, 2250–2251.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTouboul, M., Penin, N. & Nowogrocki, G. (2003). Solid State Sci. 5, 1327–1342.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds