Download citation
Download citation
link to html
The title compound, [Ag2(C12H10N4)2](p-CH3C6H4SO3)2, features a centrosymmetric dication and T-shaped AgN3 coordination geometry, as each ligand is tridentate, forming a bond to one Ag atom and chelating the other. The p-toluene­sulfonate anion accepts a weak Ag...O contact [2.5023 (14) Å], as well as forming C—H...O inter­actions. The crystal structure comprises layers, stabilized by C—H...O contacts and connected by C—H...π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807040809/hb2512sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807040809/hb2512Isup2.hkl
Contains datablock I

CCDC reference: 660165

Key indicators

  • Single-crystal X-ray study
  • T = 98 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.020
  • wR factor = 0.052
  • Data-to-parameter ratio = 14.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.94 PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 3000 Deg.
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.940 Tmax scaled 0.940 Tmin scaled 0.672
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The title compound, [Ag2(C12H10N4)2](p-CH3C6H4SO3)2 or [Ag(2—PA)]2[(p-tol)SO3]2 (I), was investigated as a part of an on-going study of the structural chemistry of Ag salts of isomeric n-pyridinealdazine molecules, n = 2, 3 and 4 (Broker & Tiekink, 2007). The centrosymmetric dication adopts a ring structure as the two Ag atoms are bridged by two tridentate 2-PA molecules, each forming a single bond to one Ag atom and a chelating interaction to the other (Fig. 1 & Table 1). Within the chelate, the Ag–Nazo bond distance is significantly shorter than the Ag–Npyridine bond; the coordination geometry around each Ag atom is T-shaped. The [(p-tol)SO3]- anion forms a close contact with Ag, i.e. Ag···O2 = 2.5023 (14) Å.

The dinuclear cation in (I) has three precedents in the literature, namely in the [CF3SO3]- (Hamblin et al., 2002), [NO3]- (Kennedy et al., 2005) and [CH3SO3]- (Broker & Tiekink, 2007) salts for which similar ring structures have been reported. By contrast, in the [BF4]- salt, characterized as an acetonitrile solvate, a polymeric structure is observed instead due to a rotation of one of the pyridine rings (Guo et al., 2002); in this case, the 2-PA ligand is tetradentate forming two chelate rings.

The global crystal packing in (I) is based on the stacking of layers along the c-direction as illustrated in Fig. 2. Thus, the tosylate-O1 and O3 atoms connect dinuclear cations into layers in the ab-plane via C—H···O interactions (Table 2); the O2 atom accepts an intramolecular C—H···O contact exclusively. The primary interactions between layers appear to be of the type C—H···π, i.e. C17—H···Cg(N4, C8—C12) = 2.69 Å, with an angle at H17 of 133° for symmetry operation (1 - x, 1 - y, 1 - z).

Related literature top

For related dinuclear structures, see: Hamblin et al. (2002); Kennedy et al. (2005); Broker & Tiekink (2007). For a a polymeric analogue, see: Guo et al. (2002).

Experimental top

[Ag(p-tol)SO3] (Aldrich, 0.05 g, 0.18 mmol) was dissolved in CH3CN (20 ml) and layered on top of a CH2Cl2 solution (20 ml) containing (0.04 g, 0.18 mmol) of 2-pyridinealdazine (Aldrich). After three days, yellow prisms of (I) were observed at the interface between the two layers; m.p. 493–495 K.

Refinement top

All the H atoms were included in the riding-model approximation, with C—H = 0.95–0.98 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

The title compound, [Ag2(C12H10N4)2](p-CH3C6H4SO3)2 or [Ag(2—PA)]2[(p-tol)SO3]2 (I), was investigated as a part of an on-going study of the structural chemistry of Ag salts of isomeric n-pyridinealdazine molecules, n = 2, 3 and 4 (Broker & Tiekink, 2007). The centrosymmetric dication adopts a ring structure as the two Ag atoms are bridged by two tridentate 2-PA molecules, each forming a single bond to one Ag atom and a chelating interaction to the other (Fig. 1 & Table 1). Within the chelate, the Ag–Nazo bond distance is significantly shorter than the Ag–Npyridine bond; the coordination geometry around each Ag atom is T-shaped. The [(p-tol)SO3]- anion forms a close contact with Ag, i.e. Ag···O2 = 2.5023 (14) Å.

The dinuclear cation in (I) has three precedents in the literature, namely in the [CF3SO3]- (Hamblin et al., 2002), [NO3]- (Kennedy et al., 2005) and [CH3SO3]- (Broker & Tiekink, 2007) salts for which similar ring structures have been reported. By contrast, in the [BF4]- salt, characterized as an acetonitrile solvate, a polymeric structure is observed instead due to a rotation of one of the pyridine rings (Guo et al., 2002); in this case, the 2-PA ligand is tetradentate forming two chelate rings.

The global crystal packing in (I) is based on the stacking of layers along the c-direction as illustrated in Fig. 2. Thus, the tosylate-O1 and O3 atoms connect dinuclear cations into layers in the ab-plane via C—H···O interactions (Table 2); the O2 atom accepts an intramolecular C—H···O contact exclusively. The primary interactions between layers appear to be of the type C—H···π, i.e. C17—H···Cg(N4, C8—C12) = 2.69 Å, with an angle at H17 of 133° for symmetry operation (1 - x, 1 - y, 1 - z).

For related dinuclear structures, see: Hamblin et al. (2002); Kennedy et al. (2005); Broker & Tiekink (2007). For a a polymeric analogue, see: Guo et al. (2002).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 70% probability level (arbitrary spheres for the H atoms). Primed atoms are generated by the symmetry operation (-x, 1 - y, 2 - z).
[Figure 2] Fig. 2. View of the crystal packing in (I) down the a axis highlighting the layer arrangement. The C–H···O interactions are shown as orange-dashed lines. Colour code: orange (silver), yellow (sulfur), red (oxygen), blue (nitrogen), grey (carbon) and green (hydrogen).
Bis(µ-pyridine-1-carbaldehyde azine-κ2N,N':κN'')disilver(I) bis(p-toluenesulfonate) top
Crystal data top
[Ag2(C12H10N4)2](C7H7SO3)2Z = 1
Mr = 978.61F(000) = 492
Triclinic, P1Dx = 1.771 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 7.9619 (17) ÅCell parameters from 2621 reflections
b = 9.4382 (11) Åθ = 2.6–30.2°
c = 13.468 (3) ŵ = 1.24 mm1
α = 78.12 (3)°T = 98 K
β = 76.75 (3)°Prism, yellow
γ = 70.13 (3)°0.35 × 0.10 × 0.05 mm
V = 917.4 (3) Å3
Data collection top
Rigaku/MSC AFC12κ/SATURN724
diffractometer
3776 independent reflections
Radiation source: fine-focus sealed tube3713 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 26.5°, θmin = 2.6°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.715, Tmax = 1.000k = 1111
10013 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0249P)2 + 0.8243P]
where P = (Fo2 + 2Fc2)/3
3776 reflections(Δ/σ)max = 0.005
254 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Ag2(C12H10N4)2](C7H7SO3)2γ = 70.13 (3)°
Mr = 978.61V = 917.4 (3) Å3
Triclinic, P1Z = 1
a = 7.9619 (17) ÅMo Kα radiation
b = 9.4382 (11) ŵ = 1.24 mm1
c = 13.468 (3) ÅT = 98 K
α = 78.12 (3)°0.35 × 0.10 × 0.05 mm
β = 76.75 (3)°
Data collection top
Rigaku/MSC AFC12κ/SATURN724
diffractometer
3776 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3713 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 1.000Rint = 0.018
10013 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.052H-atom parameters constrained
S = 1.07Δρmax = 0.46 e Å3
3776 reflectionsΔρmin = 0.42 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag0.270539 (16)0.533834 (14)0.880628 (10)0.01623 (5)
S10.11139 (5)0.33155 (5)0.76383 (3)0.01453 (9)
O10.00032 (19)0.46865 (17)0.71172 (12)0.0307 (3)
O20.12104 (17)0.34521 (16)0.86852 (10)0.0209 (3)
O30.06566 (18)0.19598 (16)0.76129 (11)0.0228 (3)
N10.45024 (19)0.65008 (17)1.01938 (11)0.0142 (3)
N20.12641 (19)0.81213 (17)0.85496 (12)0.0161 (3)
N30.06292 (19)0.75793 (17)0.82718 (11)0.0143 (3)
N40.4262 (2)0.67661 (17)0.74678 (11)0.0152 (3)
C10.6304 (2)0.6843 (2)1.05199 (14)0.0161 (3)
H10.67530.61181.10090.019*
C20.7532 (2)0.8191 (2)1.01822 (14)0.0186 (4)
H20.87930.83891.04400.022*
C30.6897 (2)0.9254 (2)0.94594 (14)0.0187 (4)
H30.77081.01980.92180.022*
C40.5054 (2)0.8904 (2)0.91000 (14)0.0167 (3)
H40.45810.95970.85930.020*
C50.3897 (2)0.75296 (19)0.94858 (13)0.0134 (3)
C60.1924 (2)0.7123 (2)0.91352 (13)0.0139 (3)
H60.11560.61360.93410.017*
C70.1246 (2)0.8529 (2)0.75909 (14)0.0153 (3)
H70.04330.94660.73400.018*
C80.3194 (2)0.8182 (2)0.71959 (13)0.0139 (3)
C90.6040 (2)0.6460 (2)0.71350 (14)0.0166 (3)
H90.68070.54620.73160.020*
C100.6828 (2)0.7538 (2)0.65329 (14)0.0182 (4)
H100.81060.72830.63220.022*
C110.5717 (2)0.8983 (2)0.62486 (14)0.0179 (4)
H110.62180.97370.58370.021*
C120.3859 (2)0.9314 (2)0.65742 (14)0.0166 (3)
H120.30601.02910.63770.020*
C130.3356 (2)0.30503 (19)0.69408 (13)0.0138 (3)
C140.4828 (2)0.2515 (2)0.74534 (14)0.0154 (3)
H140.46380.22700.81820.018*
C150.6573 (2)0.2336 (2)0.69066 (15)0.0183 (4)
H150.75700.19820.72640.022*
C160.6874 (2)0.2671 (2)0.58368 (15)0.0179 (4)
C170.5387 (3)0.3178 (2)0.53321 (14)0.0193 (4)
H170.55760.33920.46020.023*
C180.3635 (2)0.3377 (2)0.58741 (14)0.0167 (3)
H180.26360.37330.55180.020*
C190.8762 (3)0.2497 (3)0.52383 (17)0.0287 (5)
H19A0.93520.14360.51200.043*
H19B0.94630.27830.56310.043*
H19C0.86980.31580.45750.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag0.01410 (8)0.01331 (8)0.01916 (8)0.00401 (5)0.00385 (5)0.00307 (5)
S10.00972 (19)0.0146 (2)0.0176 (2)0.00285 (16)0.00073 (15)0.00194 (16)
O10.0153 (7)0.0281 (8)0.0343 (8)0.0036 (6)0.0024 (6)0.0073 (6)
O20.0184 (6)0.0280 (7)0.0188 (7)0.0117 (6)0.0031 (5)0.0083 (5)
O30.0160 (6)0.0270 (7)0.0301 (7)0.0125 (6)0.0026 (5)0.0111 (6)
N10.0123 (7)0.0148 (7)0.0153 (7)0.0042 (6)0.0028 (5)0.0009 (6)
N20.0095 (7)0.0172 (7)0.0188 (8)0.0025 (6)0.0006 (6)0.0011 (6)
N30.0096 (7)0.0149 (7)0.0166 (7)0.0026 (6)0.0010 (5)0.0019 (6)
N40.0133 (7)0.0148 (7)0.0160 (7)0.0043 (6)0.0016 (6)0.0001 (6)
C10.0143 (8)0.0201 (9)0.0146 (8)0.0078 (7)0.0014 (6)0.0006 (7)
C20.0118 (8)0.0246 (10)0.0184 (9)0.0048 (7)0.0016 (7)0.0032 (7)
C30.0146 (8)0.0173 (9)0.0204 (9)0.0008 (7)0.0040 (7)0.0008 (7)
C40.0158 (8)0.0164 (9)0.0163 (8)0.0047 (7)0.0024 (7)0.0007 (7)
C50.0128 (8)0.0151 (8)0.0127 (8)0.0042 (6)0.0024 (6)0.0026 (6)
C60.0131 (8)0.0137 (8)0.0135 (8)0.0025 (6)0.0033 (6)0.0007 (6)
C70.0132 (8)0.0127 (8)0.0181 (8)0.0027 (6)0.0022 (6)0.0007 (7)
C80.0127 (8)0.0136 (8)0.0152 (8)0.0041 (6)0.0024 (6)0.0016 (6)
C90.0125 (8)0.0181 (9)0.0166 (8)0.0029 (7)0.0019 (6)0.0002 (7)
C100.0128 (8)0.0248 (10)0.0162 (8)0.0070 (7)0.0005 (7)0.0012 (7)
C110.0182 (9)0.0190 (9)0.0173 (9)0.0101 (7)0.0005 (7)0.0009 (7)
C120.0171 (8)0.0147 (8)0.0160 (8)0.0046 (7)0.0010 (7)0.0002 (7)
C130.0118 (8)0.0115 (8)0.0179 (8)0.0043 (6)0.0013 (6)0.0016 (6)
C140.0155 (8)0.0143 (8)0.0157 (8)0.0036 (7)0.0022 (7)0.0031 (6)
C150.0133 (8)0.0180 (9)0.0247 (9)0.0036 (7)0.0047 (7)0.0059 (7)
C160.0146 (8)0.0142 (8)0.0244 (9)0.0056 (7)0.0021 (7)0.0057 (7)
C170.0221 (9)0.0190 (9)0.0161 (9)0.0084 (7)0.0006 (7)0.0016 (7)
C180.0169 (8)0.0151 (8)0.0181 (9)0.0052 (7)0.0042 (7)0.0006 (7)
C190.0155 (9)0.0343 (12)0.0331 (11)0.0091 (8)0.0065 (8)0.0070 (9)
Geometric parameters (Å, º) top
Ag—N1i2.2596 (17)C6—H60.9500
Ag—N32.2948 (17)C7—C81.464 (2)
Ag—N42.3900 (17)C7—H70.9500
Ag—O22.5023 (14)C8—C121.391 (2)
S1—O11.4428 (15)C9—C101.396 (3)
S1—O31.4530 (14)C9—H90.9500
S1—O21.4636 (14)C10—C111.382 (3)
S1—C131.7768 (18)C10—H100.9500
N1—C11.345 (2)C11—C121.387 (3)
N1—C51.346 (2)C11—H110.9500
N1—Agi2.2596 (17)C12—H120.9500
N2—C61.275 (2)C13—C181.388 (3)
N2—N31.404 (2)C13—C141.389 (2)
N3—C71.280 (2)C14—C151.387 (3)
N4—C91.332 (2)C14—H140.9500
N4—C81.346 (2)C15—C161.392 (3)
C1—C21.379 (3)C15—H150.9500
C1—H10.9500C16—C171.394 (3)
C2—C31.388 (3)C16—C191.506 (3)
C2—H20.9500C17—C181.387 (3)
C3—C41.381 (3)C17—H170.9500
C3—H30.9500C18—H180.9500
C4—C51.389 (3)C19—H19A0.9800
C4—H40.9500C19—H19B0.9800
C5—C61.470 (2)C19—H19C0.9800
N1i—Ag—N3161.06 (6)N3—C7—H7119.8
N1i—Ag—N4114.74 (6)C8—C7—H7119.8
N3—Ag—N471.65 (6)N4—C8—C12123.14 (16)
N1i—Ag—O288.50 (5)N4—C8—C7117.51 (15)
N3—Ag—O2100.89 (5)C12—C8—C7119.34 (16)
N4—Ag—O2129.62 (5)N4—C9—C10123.02 (17)
O1—S1—O3113.74 (9)N4—C9—H9118.5
O1—S1—O2113.34 (10)C10—C9—H9118.5
O3—S1—O2111.55 (9)C11—C10—C9118.79 (16)
O1—S1—C13105.70 (9)C11—C10—H10120.6
O3—S1—C13106.41 (8)C9—C10—H10120.6
O2—S1—C13105.28 (8)C10—C11—C12118.95 (17)
S1—O2—Ag115.18 (8)C10—C11—H11120.5
C1—N1—C5117.32 (15)C12—C11—H11120.5
C1—N1—Agi117.09 (12)C11—C12—C8118.39 (17)
C5—N1—Agi122.77 (11)C11—C12—H12120.8
C6—N2—N3112.67 (15)C8—C12—H12120.8
C7—N3—N2111.79 (15)C18—C13—C14119.87 (16)
C7—N3—Ag116.87 (12)C18—C13—S1119.54 (14)
N2—N3—Ag131.33 (11)C14—C13—S1120.59 (14)
C9—N4—C8117.66 (15)C15—C14—C13120.36 (17)
C9—N4—Ag128.25 (12)C15—C14—H14119.8
C8—N4—Ag112.49 (11)C13—C14—H14119.8
N1—C1—C2123.45 (17)C14—C15—C16120.44 (17)
N1—C1—H1118.3C14—C15—H15119.8
C2—C1—H1118.3C16—C15—H15119.8
C1—C2—C3118.92 (17)C15—C16—C17118.51 (17)
C1—C2—H2120.5C15—C16—C19120.79 (18)
C3—C2—H2120.5C17—C16—C19120.70 (18)
C4—C3—C2118.26 (17)C18—C17—C16121.39 (17)
C4—C3—H3120.9C18—C17—H17119.3
C2—C3—H3120.9C16—C17—H17119.3
C3—C4—C5119.54 (17)C17—C18—C13119.41 (17)
C3—C4—H4120.2C17—C18—H18120.3
C5—C4—H4120.2C13—C18—H18120.3
N1—C5—C4122.48 (16)C16—C19—H19A109.5
N1—C5—C6116.29 (15)C16—C19—H19B109.5
C4—C5—C6121.23 (16)H19A—C19—H19B109.5
N2—C6—C5118.72 (16)C16—C19—H19C109.5
N2—C6—H6120.6H19A—C19—H19C109.5
C5—C6—H6120.6H19B—C19—H19C109.5
N3—C7—C8120.49 (16)
O1—S1—O2—Ag64.41 (10)C4—C5—C6—N27.4 (3)
O3—S1—O2—Ag165.65 (7)N2—N3—C7—C8179.92 (15)
C13—S1—O2—Ag50.64 (10)Ag—N3—C7—C80.9 (2)
N1i—Ag—O2—S1128.37 (9)C9—N4—C8—C121.2 (3)
N3—Ag—O2—S168.20 (9)Ag—N4—C8—C12168.05 (14)
N4—Ag—O2—S16.91 (11)C9—N4—C8—C7178.06 (16)
C6—N2—N3—C7172.35 (16)Ag—N4—C8—C711.25 (19)
C6—N2—N3—Ag6.7 (2)N3—C7—C8—N48.7 (3)
N1i—Ag—N3—C7109.39 (19)N3—C7—C8—C12170.59 (17)
N4—Ag—N3—C73.67 (13)C8—N4—C9—C100.6 (3)
O2—Ag—N3—C7132.02 (13)Ag—N4—C9—C10163.79 (14)
N1i—Ag—N3—N271.6 (2)N4—C9—C10—C111.4 (3)
N4—Ag—N3—N2175.35 (16)C9—C10—C11—C120.3 (3)
O2—Ag—N3—N247.01 (15)C10—C11—C12—C81.5 (3)
N1i—Ag—N4—C912.19 (17)N4—C8—C12—C112.3 (3)
N3—Ag—N4—C9172.99 (16)C7—C8—C12—C11176.99 (16)
O2—Ag—N4—C997.93 (16)O1—S1—C13—C1838.59 (17)
N1i—Ag—N4—C8152.90 (11)O3—S1—C13—C1882.66 (16)
N3—Ag—N4—C87.90 (11)O2—S1—C13—C18158.82 (14)
O2—Ag—N4—C896.97 (13)O1—S1—C13—C14141.67 (15)
C5—N1—C1—C21.3 (3)O3—S1—C13—C1497.07 (16)
Agi—N1—C1—C2160.20 (14)O2—S1—C13—C1421.44 (17)
N1—C1—C2—C30.7 (3)C18—C13—C14—C151.4 (3)
C1—C2—C3—C40.8 (3)S1—C13—C14—C15178.83 (14)
C2—C3—C4—C51.6 (3)C13—C14—C15—C160.9 (3)
C1—N1—C5—C40.5 (3)C14—C15—C16—C170.4 (3)
Agi—N1—C5—C4159.94 (13)C14—C15—C16—C19179.30 (18)
C1—N1—C5—C6179.49 (15)C15—C16—C17—C181.2 (3)
Agi—N1—C5—C620.1 (2)C19—C16—C17—C18178.54 (18)
C3—C4—C5—N11.0 (3)C16—C17—C18—C130.6 (3)
C3—C4—C5—C6179.05 (17)C14—C13—C18—C170.7 (3)
N3—N2—C6—C5179.77 (14)S1—C13—C18—C17179.58 (14)
N1—C5—C6—N2172.63 (16)
Symmetry code: (i) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1ii0.952.363.025 (2)126
C10—H10···O1ii0.952.563.109 (2)117
C14—H14···O20.952.562.918 (2)103
C7—H7···O3iii0.952.533.116 (2)120
C12—H12···O3iii0.952.553.189 (2)125
C15—H15···O3ii0.952.603.478 (2)154
Symmetry codes: (ii) x+1, y, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ag2(C12H10N4)2](C7H7SO3)2
Mr978.61
Crystal system, space groupTriclinic, P1
Temperature (K)98
a, b, c (Å)7.9619 (17), 9.4382 (11), 13.468 (3)
α, β, γ (°)78.12 (3), 76.75 (3), 70.13 (3)
V3)917.4 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.24
Crystal size (mm)0.35 × 0.10 × 0.05
Data collection
DiffractometerRigaku/MSC AFC12κ/SATURN724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.715, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10013, 3776, 3713
Rint0.018
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.052, 1.07
No. of reflections3776
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.42

Computer programs: CrystalClear (Rigaku/MSC, 2005), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006).

Selected geometric parameters (Å, º) top
Ag—N1i2.2596 (17)Ag—N42.3900 (17)
Ag—N32.2948 (17)
N1i—Ag—N3161.06 (6)N3—Ag—N471.65 (6)
N1i—Ag—N4114.74 (6)
Symmetry code: (i) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1ii0.952.363.025 (2)126
C10—H10···O1ii0.952.563.109 (2)117
C14—H14···O20.952.562.918 (2)103
C7—H7···O3iii0.952.533.116 (2)120
C12—H12···O3iii0.952.553.189 (2)125
C15—H15···O3ii0.952.603.478 (2)154
Symmetry codes: (ii) x+1, y, z; (iii) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds