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Atomic arrangements may be investigated using graph theory and topology, where the focus is on 
the connectivity of structural arrangements rather than on interatomic distances and angles. 
Polyhedra may be represented by colored vertices of a labeled graph in which different colors 
represent different coordinations and labels denote chemically and crystallographically distinct 
polyhedra. Linkage is indicated by edges between vertices, and the number of edges between two 
vertices denotes the number of atoms common to both polyhedra. The graph may be completely 
represented by its adjacency matrix, and we may represent the N independent matrix elements by 
the ordered set {a,b,c,...,N}. The collection of all permutations of the vertex labellings that preserve 
isomorphism is the automorphism group F(G) of the graph. F(G) is a subgroup of the symmetric 
group Sn, and the complementary disjoint subgroup of S defines all distinct graphs whose vertex
sets correspond to the (unordered) set {a,b,c,...,N}. It is more convenient in practice to work with
the corresponding matrix-element symmetries that form a permutation group, denoted P. Graphical 
isomers can be enumerated using Polya’s theorem, by substitution of permitted matrix elements as 
weight functions into the cycle index of the permutation group P, and can be derived as 
nonequivalent derangements of the integer set {a,b,c,...,N}. Geometrical isomers can be 
enumerated for a specific graphical isomer by successively applying Polya’s theorem to the 
distribution of shared elements over the total element set of each polyhedron in turn. Thus all 
arrangements of a specific set of coordination polyhedra can be derived in this fashion.

Many crystal structures contain similar modular elements that (1) allow them to be associated into 
broad groups, and (2) allow prediction of new but related structures. This type of behavior can be 
quantified in a very concise manner by incorporating aspects of the bond topologies and chemical 
compositions of these structures into a general formula by writing the local topological details of 
each cation and anion, along with their chemical identity, as a general expression called a 
structure-generating function. Here, I describe this procedure for polysomatic T–O–T (pyroxene, 
amphibole, pyribole and mica) and H–O–H (rinkite-group TS-block minerals, astrophyllite, mica) 
supergroup structures which consist of alternating layers of tetrahedra (T sheets), octahedra (O 
sheets) or both (H sheets). We may write tetrahedrally coordinated cations and their associated 
anions as {T2n m}. For {T2n m} to be a chain or ribbon, m = 5n + N, where N is an integer. Within 
the {T2n (5n+N)} unit, we may recognize three types of anion vertices: (1) bridging anions, br, that 
are bonded to two T cations; (2) apical anions, ap, that are involved in linkage to other cations out 
of the plane of the bridging anions; and (3) linking anions, l, that link to non-T cations in the plane 
of the bridging anions. We may incorporate the connectivity of the cations in our algebraic 
representation of the chain as follows: {T2n
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of the T- or H-sheets provide some anions of the layer of octahedra. We may use the handshaking 
di-lemma of graph theory to examine the interaction between the two types of layers, and write a 
structure-generating function, S(N;n), that gives both the stoichiometry and aspects of the bond 
topology of the structures. We may follow the same procedure for the H–O–H structures. As the 
structure-generating functions are algebraic expressions, we may combine them into a general 
structure-generating function for both groups of structures: 
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Different values of N and n generate different chemical compositions and structural arrangements. 
Moreover, using more than one value of n generates mixed-module structures, e.g.
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Any structure-building algorithm can form the basis for a structure-generating function, and such 
algorithms can be combined algebraically to form more general functions.


