Download citation
Download citation
link to html
The title complex, [Mo(C5H5)(C6H4FO)(C4H11Si)(NO)], is formed by reacting CpMo(NO)(CH2SiMe3)2, where Cp is cyclo­penta­dienyl, with one equivalent of p-FC6H4OH. The complex exhibits the expected piano-stool molecular structure, with a linear nitro­syl ligand [Mo—N—O 168.2 (2)°] having Mo—N and N—O distances of 1.764 (2) and 1.207 (3) Å, respectively. The phenoxo Mo—O distance of 1.945 (2) Å is suggestive of some multiple-bond character.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101019382/da1210sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101019382/da1210Isup2.hkl
Contains datablock I

CCDC reference: 181977

Comment top

Many attempts to generate molybdenum– and tungsten–alkoxo complexes in our laboratories have been unsuccessful. The standard metathetical protocol, using a metal–halide precursor with an alkali metal–alkoxide salt, often results in either decomposition or the formation of N—O bond-cleavage products (Legzdins et al., 1996). An alternate procedure, namely protonation of the alkyl ligand in CpMo(NO)(CH2SiMe3)2 by an alcohol to generate the corresponding alkoxo complex and SiMe4, has now been found to generate a variety of new complexes in good yield. The title compound, CpMo(NO)(CH2SiMe3)(p-FC6H4O), (I) (Fig. 1), has been synthesized by this method.

Compound (I) exhibits a pseudo-tetrahedral geometry around the Mo atom typical of this class of three-legged piano-stool molecules. The Mo—N—O linkage is linear [Mo1—N1—O1 168.2 (3)°], with a short Mo1—N1 distance [1.764 (2) Å] and a long N—O distance [1.207 (3) Å], relative to most other nitrosyls (Feltham & Enemark, 1981). This indicates that the nitrosyl ligand is strongly involved in π-back-bonding with the Mo centre. The phenoxo Mo—O distance is 1.945 (2) Å, significantly longer than the W—O distances in the related complexes Cp*W(NO)(OCH2Ph)2 [1.910 (4) Å] and Cp*W(NO)(OCMe3)2 [Cp* is pentamethylcyclopentadienyl; 1.890 (5) and 1.903 (5) Å, respectively; Legzdins et al., 1993], where the metal–oxygen bond has definite multiple-bond character. However, it is shorter than the W—O bonds in Cp*W(NO)(OMe)[η2-OC(Me)CHCPh] [2.001 (7) Å; Legzdins et al., 1998] and Cp*W(NO)(OCMe3)[η2-N(CMe3)C(CH2CMe3)] [1.978 (4) Å; Legzdins et al., 1994]. The W—O bonds in these two compounds, by the nature of the η2-bound co-ligands, are single bonds, which then suggests that the Mo—O link in (I) is somewhat more than a single bond. Comparison to other W and Mo complexes, namely Cp*W(MeCCMe)2(OPh) [W—O 2.072 (7) Å; O'Regan et al., 1992], [Cp*W(Me)2(OC6F5)]2(µ-N2) [W—O 2.079 (8) Å; O'Regan et al., 1990], and [Mo2(OPh-4-Me)7(Me2NH)2]- [Mo—Oterminal 2.03 Å (average); Coffindaffer et al., 1985], further supports this assumption.

Experimental top

In a Schlenk tube, under anaerobic and anhydrous conditions, (η5-C5H5)Mo(NO)(CH2SiMe3)2 (100 mg, 0.27 mmol) was combined with p-fluorophenol (31 mg, 0.27 mmol), and the mixture was dissolved in THF (20 ml). The resulting purple solution was stirred for 3 days at room temperature, whereupon it became deep red. The THF was removed in vacuo, and the resulting red oil was dissolved in hexanes (30 ml) and filtered through a column of Celite (2 cm x 2 cm). The volume of this filtrate was reduced to 4 ml, and it was cooled to -30°C overnight to induce the deposition of (I) as a dark red powder (64 mg, 60% yield). X-ray quality crystals were grown from a concentrated hexanes solution at -30°C over the course of several weeks. IR (Nujol): 1635 cm-1 (νNO). 1H NMR (200 MHz, C6D6): δ 6.81 (t, 2H, C—Hm), 7.02 (dd, 2H, C—Ho), 5.19 (s, 5H, C5H5), 2.48 (d, 1H, CH2SiMe3), 1.97 (d, 1H, CH2SiMe3), 0.17 (s, 9H, SiCH3). 13C NMR (200 MHz, C6D6): δ 118.6 (C—F), 116.1 (C—Ho), 115.6 (C—Hm), 104.7 (C5H5), 49.3 (CH2Si), 1.93 (SiCH3).

Data were collected in 0.50° oscillations with 60.0 s exposures. A sweep of data was carried out using ϕ oscillations from 0.0 to 190.0° at χ = -90° and a second sweep was performed using ω oscillations between -23.0 and 18.0° at χ = -90.0°. The crystal-to-detector distance was 39.25 mm. The detector swing angle was -10.43°.

Refinement top

The absorption correction is based on a three-dimensional analysis of symmetry-equivalent data and is performed along with batch scaling in a single step. The resulting transmission factors, therefore, include contributions from absorption, crystal decay, and detectable variations in beam intensity.

Computing details top

Data collection: D*TREK (Molecular Structure Corporation, 1996-1998); cell refinement: D*TREK; data reduction: D*TREK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: TEXSAN (Molecular Structure Corporation, 1992-1997); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probablilty ellipsoids.
(I) top
Crystal data top
[Mo(C5H5)(C6H4FO)(C4H11Si)(NO)]Z = 2
Mr = 389.35F(000) = 396.00
Triclinic, P1Dx = 1.517 Mg m3
a = 7.0052 (7) ÅMo Kα radiation, λ = 0.7107 Å
b = 9.0510 (9) ÅCell parameters from 4985 reflections
c = 14.021 (2) Åθ = 3.1–27.9°
α = 103.510 (5)°µ = 0.85 mm1
β = 98.776 (5)°T = 180 K
γ = 91.830 (4)°Irregular, red
V = 852.2 (1) Å30.25 × 0.20 × 0.06 mm
Data collection top
Rigaku/ADSC CCD
diffractometer
3422 independent reflections
Radiation source: sealed tube2674 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 11.76 pixels mm-1θmax = 27.9°, θmin = 3.1°
ϕ and ω scansh = 78
Absorption correction: multi-scan (D*TREK MSC, 1996-1998)
?
k = 1110
Tmin = 0.73, Tmax = 0.95l = 1815
7376 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.029H-atom parameters not refined
wR(F2) = 0.072Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo2)]
S = 0.86(Δ/σ)max = 0.001
3422 reflectionsΔρmax = 0.60 e Å3
190 parametersΔρmin = 0.92 e Å3
Crystal data top
[Mo(C5H5)(C6H4FO)(C4H11Si)(NO)]γ = 91.830 (4)°
Mr = 389.35V = 852.2 (1) Å3
Triclinic, P1Z = 2
a = 7.0052 (7) ÅMo Kα radiation
b = 9.0510 (9) ŵ = 0.85 mm1
c = 14.021 (2) ÅT = 180 K
α = 103.510 (5)°0.25 × 0.20 × 0.06 mm
β = 98.776 (5)°
Data collection top
Rigaku/ADSC CCD
diffractometer
3422 independent reflections
Absorption correction: multi-scan (D*TREK MSC, 1996-1998)
?
2674 reflections with I > 3σ(I)
Tmin = 0.73, Tmax = 0.95Rint = 0.043
7376 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.072H-atom parameters not refined
S = 0.86Δρmax = 0.60 e Å3
3422 reflectionsΔρmin = 0.92 e Å3
190 parameters
Special details top

Experimental. Data were collected in 0.50° oscillations with 10.0 s exposures. A sweep of data was done using ϕ oscillations from 0.0 to 190.0° at χ = -90° and a second sweep was performed using ω oscillations between -23.0 and 18.0° at χ = 90.0°. The crystal-to-detector distance was 39.25 mm. The detector swing angle was -10.4°. The absorption correction is based on a three-dimensional analysis of symmetry-equivalent data and is performed along with batch scaling in a single step. The resulting transmission factors, therefore, include contributions from absorption, crystal decay, and detectable variations in beam intensity.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.48307 (3)0.39565 (3)0.20474 (2)0.01719 (7)
Si10.6767 (1)0.1730 (1)0.37501 (6)0.0236 (2)
F10.3157 (3)0.0624 (2)0.1375 (1)0.0439 (6)
O10.1359 (3)0.3431 (3)0.2918 (2)0.0409 (7)
O20.3965 (3)0.3195 (2)0.0624 (1)0.0225 (5)
N10.2755 (3)0.3481 (3)0.2515 (2)0.0234 (7)
C10.4668 (5)0.6536 (4)0.2554 (3)0.0342 (9)
C20.5770 (5)0.6363 (4)0.1777 (2)0.0306 (9)
C30.7502 (4)0.5781 (4)0.2081 (2)0.0286 (8)
C40.7522 (4)0.5596 (3)0.3057 (2)0.0291 (8)
C50.5769 (5)0.6094 (4)0.3358 (2)0.0315 (9)
C60.2174 (4)0.2549 (3)0.0134 (2)0.0185 (7)
C70.2047 (4)0.1199 (3)0.0601 (2)0.0232 (8)
C80.0239 (5)0.0553 (4)0.1118 (2)0.0262 (8)
C90.1377 (4)0.1279 (4)0.0878 (2)0.0265 (8)
C100.1303 (4)0.2598 (4)0.0169 (2)0.0343 (9)
C110.0516 (5)0.3247 (4)0.0340 (2)0.0303 (8)
C120.6576 (4)0.2314 (3)0.2553 (2)0.0195 (7)
C130.8068 (6)0.3251 (4)0.4812 (2)0.043 (1)
C140.8240 (5)0.0030 (4)0.3670 (3)0.038 (1)
C150.4294 (5)0.1242 (5)0.3988 (3)0.044 (1)
H10.33610.68960.25350.041*
H20.53820.66090.11340.037*
H30.85440.55410.16880.034*
H40.85620.51930.34520.035*
H50.53890.61310.40060.038*
H60.32250.07030.07540.028*
H70.01250.03910.16390.031*
H80.24890.30800.00180.041*
H90.06080.42090.08470.036*
H100.61930.13670.20420.024*
H110.79020.26630.25270.024*
H120.82510.28700.54170.051*
H130.93340.35330.46640.051*
H140.73050.41460.49120.051*
H150.75530.08320.31600.046*
H160.84420.02390.43150.046*
H170.94960.02660.34940.046*
H180.35600.21580.40730.052*
H190.36180.04570.34250.052*
H200.44090.08680.45950.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0119 (1)0.0209 (1)0.0174 (1)0.00086 (9)0.00165 (8)0.00270 (9)
Si10.0218 (4)0.0256 (4)0.0221 (4)0.0032 (3)0.0004 (3)0.0066 (3)
F10.026 (1)0.047 (1)0.046 (1)0.0103 (9)0.0113 (9)0.001 (1)
O10.016 (1)0.064 (2)0.049 (1)0.002 (1)0.017 (1)0.018 (1)
O20.018 (1)0.028 (1)0.018 (1)0.0024 (9)0.0008 (8)0.0010 (8)
N10.016 (1)0.031 (1)0.023 (1)0.001 (1)0.004 (1)0.005 (1)
C10.029 (2)0.021 (2)0.054 (2)0.006 (1)0.008 (2)0.009 (2)
C20.031 (2)0.026 (2)0.036 (2)0.009 (1)0.001 (1)0.015 (1)
C30.023 (2)0.027 (2)0.034 (2)0.011 (1)0.009 (1)0.001 (1)
C40.025 (2)0.020 (2)0.034 (2)0.006 (1)0.009 (1)0.000 (1)
C50.046 (2)0.020 (2)0.024 (2)0.006 (1)0.009 (1)0.005 (1)
C60.019 (1)0.019 (1)0.017 (1)0.001 (1)0.002 (1)0.006 (1)
C70.024 (2)0.025 (2)0.020 (1)0.002 (1)0.007 (1)0.003 (1)
C80.030 (2)0.024 (2)0.022 (2)0.002 (1)0.003 (1)0.003 (1)
C90.019 (2)0.029 (2)0.026 (2)0.005 (1)0.008 (1)0.005 (1)
C100.020 (2)0.041 (2)0.034 (2)0.010 (1)0.005 (1)0.001 (2)
C110.026 (2)0.027 (2)0.029 (2)0.008 (1)0.004 (1)0.007 (1)
C120.014 (1)0.019 (1)0.023 (1)0.001 (1)0.003 (1)0.001 (1)
C130.058 (3)0.044 (2)0.021 (2)0.008 (2)0.002 (2)0.004 (2)
C140.036 (2)0.040 (2)0.041 (2)0.004 (2)0.001 (2)0.017 (2)
C150.033 (2)0.063 (3)0.043 (2)0.002 (2)0.008 (2)0.030 (2)
Geometric parameters (Å, º) top
Mo1—O21.945 (2)C4—H40.98
Mo1—N11.764 (2)C5—H50.98
Mo1—C12.288 (3)C6—C71.394 (4)
Mo1—C22.386 (3)C6—C111.377 (4)
Mo1—C32.443 (3)C7—C81.395 (4)
Mo1—C42.405 (3)C7—H60.98
Mo1—C52.333 (3)C8—C91.373 (4)
Mo1—C122.133 (3)C8—H70.98
Si1—C121.862 (3)C9—C101.358 (4)
Si1—C131.869 (3)C10—C111.399 (4)
Si1—C141.871 (4)C10—H80.98
Si1—C151.872 (4)C11—H90.98
F1—C91.373 (3)C12—H100.98
O1—N11.207 (3)C12—H110.98
O2—C61.375 (3)C13—H120.98
C1—C21.412 (4)C13—H130.98
C1—C51.411 (5)C13—H140.98
C1—H10.98C14—H150.98
C2—C31.385 (5)C14—H160.98
C2—H20.98C14—H170.98
C3—C41.414 (4)C15—H180.98
C3—H30.98C15—H190.98
C4—C51.412 (4)C15—H200.98
Mo1···C12.288 (3)O2···C13.519 (4)
Mo1···C52.333 (3)N1···C53.011 (4)
Mo1···C22.386 (3)N1···C13.019 (4)
Mo1···C42.405 (3)C2···C7iv3.490 (4)
Mo1···C32.443 (3)C2···C6iv3.542 (4)
F1···C2i3.439 (4)C3···C123.417 (4)
F1···C12ii3.445 (3)C4···C122.918 (4)
F1···C1i3.476 (4)C4···C133.594 (5)
F1···C7ii3.544 (4)C5···C123.437 (4)
O1···C4iii3.379 (4)C7···C9ii3.457 (4)
O1···C12iii3.395 (3)C8···C8ii3.564 (6)
O2···C23.068 (4)C8···C9ii3.576 (4)
O2···C33.412 (3)C11···C11i3.585 (7)
O2···C2iv3.513 (4)
O2—Mo1—N1100.84 (9)Mo1—C4—C374.5 (2)
O2—Mo1—C1112.2 (1)Mo1—C4—C569.9 (2)
O2—Mo1—C289.6 (1)Mo1—C4—H4121.1
O2—Mo1—C3101.46 (9)C3—C4—C5107.7 (3)
O2—Mo1—C4134.8 (1)C3—C4—H4126.2
O2—Mo1—C5146.4 (1)C5—C4—H4126.1
O2—Mo1—C12107.86 (9)Mo1—C5—C170.5 (2)
N1—Mo1—C195.5 (1)Mo1—C5—C475.5 (2)
N1—Mo1—C2127.4 (1)Mo1—C5—H5119.8
N1—Mo1—C3149.7 (1)C1—C5—C4107.4 (3)
N1—Mo1—C4123.1 (1)C1—C5—H5126.2
N1—Mo1—C593.6 (1)C4—C5—H5126.4
N1—Mo1—C1296.0 (1)O2—C6—C7119.4 (2)
C1—Mo1—C235.1 (1)O2—C6—C11120.7 (2)
C1—Mo1—C357.0 (1)C7—C6—C11119.8 (3)
C1—Mo1—C457.9 (1)C6—C7—C8119.8 (3)
C1—Mo1—C535.5 (1)C6—C7—H6120.1
C1—Mo1—C12135.2 (1)C8—C7—H6120.1
C2—Mo1—C333.3 (1)C7—C8—C9118.4 (3)
C2—Mo1—C456.7 (1)C7—C8—H7120.8
C2—Mo1—C558.0 (1)C9—C8—H7120.8
C2—Mo1—C12129.7 (1)F1—C9—C8118.2 (3)
C3—Mo1—C433.9 (1)F1—C9—C10118.5 (3)
C3—Mo1—C557.0 (1)C8—C9—C10123.3 (3)
C3—Mo1—C1296.4 (1)C9—C10—C11118.1 (3)
C4—Mo1—C534.6 (1)C9—C10—H8120.9
C4—Mo1—C1279.8 (1)C11—C10—H8121.0
C5—Mo1—C12100.6 (1)C6—C11—C10120.6 (3)
C12—Si1—C13111.7 (1)C6—C11—H9119.8
C12—Si1—C14108.7 (1)C10—C11—H9119.6
C12—Si1—C15109.9 (1)Mo1—C12—Si1129.2 (1)
C13—Si1—C14106.5 (2)Mo1—C12—H10104.3
C13—Si1—C15110.2 (2)Mo1—C12—H11104.2
C14—Si1—C15109.8 (2)Si1—C12—H10104.5
Mo1—O2—C6128.5 (2)Si1—C12—H11104.4
Mo1—N1—O1168.2 (2)H10—C12—H11109.5
Mo1—C1—C276.2 (2)Si1—C13—H12109.5
Mo1—C1—C573.9 (2)Si1—C13—H13109.4
Mo1—C1—H1115.8Si1—C13—H14109.5
C2—C1—C5108.2 (3)H12—C13—H13109.4
C2—C1—H1125.8H12—C13—H14109.5
C5—C1—H1126.1H13—C13—H14109.5
Mo1—C2—C168.7 (2)Si1—C14—H15109.5
Mo1—C2—C375.6 (2)Si1—C14—H16109.5
Mo1—C2—H2121.3Si1—C14—H17109.5
C1—C2—C3108.0 (3)H15—C14—H16109.4
C1—C2—H2126.1H15—C14—H17109.4
C3—C2—H2125.9H16—C14—H17109.4
Mo1—C3—C271.1 (2)Si1—C15—H18109.3
Mo1—C3—C471.6 (2)Si1—C15—H19109.6
Mo1—C3—H3123.5Si1—C15—H20109.5
C2—C3—C4108.7 (3)H18—C15—H19109.5
C2—C3—H3125.7H18—C15—H20109.3
C4—C3—H3125.6H19—C15—H20109.7
Mo1—O2—C6—C7132.2 (2)C1—Mo1—C3—C237.9 (2)
Mo1—O2—C6—C1149.9 (4)C1—Mo1—C3—C480.2 (2)
Mo1—C1—C2—C366.0 (2)C1—Mo1—C4—C377.4 (2)
Mo1—C1—C5—C467.1 (2)C1—Mo1—C4—C538.5 (2)
Mo1—C2—C1—C567.7 (2)C1—Mo1—C5—C4114.8 (3)
Mo1—C2—C3—C462.0 (2)C1—C2—Mo1—C3116.3 (3)
Mo1—C3—C2—C161.4 (2)C1—C2—Mo1—C480.2 (2)
Mo1—C3—C4—C562.4 (2)C1—C2—Mo1—C538.8 (2)
Mo1—C4—C3—C261.7 (2)C1—C2—Mo1—C12115.0 (2)
Mo1—C4—C5—C163.7 (2)C1—C2—C3—C40.6 (3)
Mo1—C5—C1—C269.2 (2)C1—C5—Mo1—C238.3 (2)
Mo1—C5—C4—C365.5 (2)C1—C5—Mo1—C378.1 (2)
Mo1—C12—Si1—C1371.7 (2)C1—C5—Mo1—C4114.8 (3)
Mo1—C12—Si1—C14171.2 (2)C1—C5—Mo1—C12168.8 (2)
Mo1—C12—Si1—C1550.9 (2)C1—C5—C4—C31.8 (3)
Si1—C12—Mo1—O2143.6 (2)C2—Mo1—O2—C6124.6 (2)
Si1—C12—Mo1—N140.2 (2)C2—Mo1—C1—C5113.9 (3)
Si1—C12—Mo1—C163.8 (2)C2—Mo1—C3—C4118.1 (3)
Si1—C12—Mo1—C2111.5 (2)C2—Mo1—C4—C335.4 (2)
Si1—C12—Mo1—C3112.2 (2)C2—Mo1—C4—C580.5 (2)
Si1—C12—Mo1—C482.5 (2)C2—Mo1—C5—C476.5 (2)
Si1—C12—Mo1—C554.6 (2)C2—C1—Mo1—C335.9 (2)
F1—C9—C8—C7178.7 (3)C2—C1—Mo1—C476.4 (2)
F1—C9—C10—C11179.3 (3)C2—C1—Mo1—C5113.9 (3)
O1—N1—Mo1—O2125 (1)C2—C1—Mo1—C1298.2 (2)
O1—N1—Mo1—C111 (1)C2—C1—C5—C42.1 (4)
O1—N1—Mo1—C227 (1)C2—C3—Mo1—C4118.1 (3)
O1—N1—Mo1—C312 (1)C2—C3—Mo1—C580.6 (2)
O1—N1—Mo1—C444 (1)C2—C3—Mo1—C12179.0 (2)
O1—N1—Mo1—C524 (1)C2—C3—C4—C50.7 (3)
O1—N1—Mo1—C12125 (1)C3—Mo1—O2—C6156.0 (2)
O2—Mo1—C1—C253.6 (2)C3—Mo1—C1—C578.0 (2)
O2—Mo1—C1—C5167.4 (2)C3—Mo1—C4—C5115.9 (3)
O2—Mo1—C2—C1131.8 (2)C3—Mo1—C5—C436.7 (2)
O2—Mo1—C2—C3111.9 (2)C3—C2—Mo1—C436.1 (2)
O2—Mo1—C3—C271.2 (2)C3—C2—Mo1—C577.5 (2)
O2—Mo1—C3—C4170.6 (2)C3—C2—Mo1—C121.3 (2)
O2—Mo1—C4—C313.0 (3)C3—C2—C1—C51.7 (4)
O2—Mo1—C4—C5128.9 (2)C3—C4—Mo1—C5115.9 (3)
O2—Mo1—C5—C121.3 (3)C3—C4—Mo1—C12118.1 (2)
O2—Mo1—C5—C493.5 (3)C4—Mo1—O2—C6163.3 (2)
O2—C6—C7—C8178.6 (3)C4—Mo1—C1—C537.5 (2)
O2—C6—C11—C10179.1 (3)C4—C3—Mo1—C537.6 (2)
N1—Mo1—O2—C63.4 (2)C4—C3—Mo1—C1260.9 (2)
N1—Mo1—C1—C2157.6 (2)C4—C5—Mo1—C1254.0 (2)
N1—Mo1—C1—C588.5 (2)C5—Mo1—O2—C6110.3 (3)
N1—Mo1—C2—C128.5 (2)C5—C1—Mo1—C1215.7 (3)
N1—Mo1—C2—C3144.8 (2)C5—C4—Mo1—C12126.1 (2)
N1—Mo1—C3—C265.5 (3)C6—O2—Mo1—C12103.4 (2)
N1—Mo1—C3—C452.6 (3)C6—C7—C8—C90.2 (5)
N1—Mo1—C4—C3151.4 (2)C6—C11—C10—C91.0 (5)
N1—Mo1—C4—C535.5 (2)C7—C6—C11—C101.3 (5)
N1—Mo1—C5—C194.4 (2)C7—C8—C9—C100.5 (5)
N1—Mo1—C5—C4150.8 (2)C8—C7—C6—C110.7 (5)
C1—Mo1—O2—C697.1 (2)C8—C9—C10—C110.1 (6)
C1—Mo1—C2—C3116.3 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z; (iii) x1, y, z; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Mo(C5H5)(C6H4FO)(C4H11Si)(NO)]
Mr389.35
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)7.0052 (7), 9.0510 (9), 14.021 (2)
α, β, γ (°)103.510 (5), 98.776 (5), 91.830 (4)
V3)852.2 (1)
Z2
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.25 × 0.20 × 0.06
Data collection
DiffractometerRigaku/ADSC CCD
diffractometer
Absorption correctionMulti-scan (D*TREK MSC, 1996-1998)
Tmin, Tmax0.73, 0.95
No. of measured, independent and
observed [I > 3σ(I)] reflections
7376, 3422, 2674
Rint0.043
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.072, 0.86
No. of reflections3422
No. of parameters190
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.60, 0.92

Computer programs: D*TREK (Molecular Structure Corporation, 1996-1998), D*TREK, SIR97 (Altomare et al., 1999), TEXSAN (Molecular Structure Corporation, 1992-1997), TEXSAN.

Selected geometric parameters (Å, º) top
Mo1—O21.945 (2)Mo1—C32.443 (3)
Mo1—N11.764 (2)Mo1—C42.405 (3)
Mo1—C12.288 (3)Mo1—C52.333 (3)
Mo1—C22.386 (3)Mo1—C122.133 (3)
O2—Mo1—N1100.84 (9)Mo1—O2—C6128.5 (2)
O2—Mo1—C12107.86 (9)Mo1—N1—O1168.2 (2)
N1—Mo1—C1296.0 (1)Mo1—C12—Si1129.2 (1)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds