• Letter
  • Open Access

Nature of seniority symmetry breaking in the semimagic nucleus Ru94

B. Das et al.
Phys. Rev. C 105, L031304 – Published 25 March 2022

Abstract

Direct lifetime measurements via γγ coincidences using a fast timing detector array consisting of LaBr3(Ce) scintillators has been applied to determine the lifetime of low-lying states in the semimagic (N=50) nucleus Ru94. The experiment was carried out as the first in a series of “FAIR-0” experiments with the DESPEC experimental setup at the Facility for Antiproton and Ion Research (FAIR). Excited states in Ru94 were populated primarily via the β-delayed proton emission of Pd95 nuclei, produced in the projectile fragmentation of an 850 MeV/nucleon Xe124 beam impinging on a 4 g/cm2Be9 target. While the deduced E2 strength for the 2+0+ transition in the yrast cascade follows the expected behavior for conserved seniority symmetry, the intermediate 4+2+ transition exhibits a drastic enhancement of transition strength in comparison with pure-seniority model predictions as well as standard shell model predictions in the fpg proton hole space with respect to doubly magic Sn100. The anomalous behavior is ascribed to a subtle interference between the wave function of the lowest seniority ν=2, Iπ=4+ state and that of a close-lying ν=4 state that exhibits partial dynamic symmetry. In addition, the observed strongly prohibitive 6+4+ transition can be attributed to the same mechanism but with a destructive interference. It is noted that such effects may provide stringent tests of the nucleon-nucleon interactions employed in state-of-the-art theoretical model calculations.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 17 October 2021
  • Revised 17 January 2022
  • Accepted 11 March 2022

DOI:https://doi.org/10.1103/PhysRevC.105.L031304

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by Bibsam.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Nuclear PhysicsAccelerators & Beams

Authors & Affiliations

Click to Expand

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 105, Iss. 3 — March 2022

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×