Intrinsic point defects and intergrowths in layered bismuth triiodide

Sung Beom Cho, Jaume Gazquez, Xing Huang, Yoon Myung, Parag Banerjee, and Rohan Mishra
Phys. Rev. Materials 2, 064602 – Published 7 June 2018
PDFHTMLExport Citation

Abstract

Defect-tolerant semiconductors have the ability to retain the electronic properties of their pristine form even in the presence of defects. Currently, the presence of antibonding states at the valence band edges induced by a lone pair of 6s2 or 5s2 electrons is used as a descriptor to predict defect-tolerant semiconductors. Based on this descriptor, bismuth triiodide (BiI3) has been proposed as a defect-tolerant semiconductor with promise for photovoltaic applications. However, clear demonstration of the defect tolerance of BiI3 including a comprehensive study of the type of defects and their effect on the electronic structure has not been reported so far. Here, we present an atomic-scale landscape of point defects and intergrowths in BiI3 using a combination of density-functional-theory calculations and aberration-corrected scanning transmission electron microscope imaging. We show that BiI3 is not a defect-tolerant semiconductor as intrinsic point defects have low formation energy and show transition levels that are deep within the band gap and can act as nonradiative recombination centers. We show that Bi-rich growth conditions lead to higher carrier concentration over I-rich conditions. We also show the presence of intergrowths that are made up of a bilayer of bismuth atoms sandwiched within BiI3 sheets with a missing layer of iodine atoms. These intergrowths result in metallic behavior within the semiconducting matrix of BiI3. We propose that atomic-scale control of the intergrowths can be beneficial to avoid carrier trapping and to enhance photon absorbance. Overall, this work highlights the need to go beyond heuristic descriptors based on band-edge characteristics to predict defect-tolerant semiconductors.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 19 November 2017
  • Revised 26 February 2018

DOI:https://doi.org/10.1103/PhysRevMaterials.2.064602

©2018 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Sung Beom Cho1,*, Jaume Gazquez2, Xing Huang1,†, Yoon Myung1,‡, Parag Banerjee1,3, and Rohan Mishra1,3,§

  • 1Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130, USA
  • 2Institut de Ciència de Materials de Barcelona, Barcelona 08193, Spain
  • 3Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA

  • *cho.s@wustl.edu
  • Present address: Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA.
  • Present address: Department of Nanotechnology and Advanced Materials, Sejong University, Seoul 05006, Republic of Korea.
  • §rmishra@wustl.edu

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 2, Iss. 6 — June 2018

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Materials

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×