• Editors' Suggestion

Results of a Search for Sub-GeV Dark Matter Using 2013 LUX Data

D. S. Akerib et al. (LUX Collaboration)
Phys. Rev. Lett. 122, 131301 – Published 1 April 2019

Abstract

The scattering of dark matter (DM) particles with sub-GeV masses off nuclei is difficult to detect using liquid xenon-based DM search instruments because the energy transfer during nuclear recoils is smaller than the typical detector threshold. However, the tree-level DM-nucleus scattering diagram can be accompanied by simultaneous emission of a bremsstrahlung photon or a so-called “Migdal” electron. These provide an electron recoil component to the experimental signature at higher energies than the corresponding nuclear recoil. The presence of this signature allows liquid xenon detectors to use both the scintillation and the ionization signals in the analysis where the nuclear recoil signal would not be otherwise visible. We report constraints on spin-independent DM-nucleon scattering for DM particles with masses of 0.45GeV/c2 using 1.4×104kgday of search exposure from the 2013 data from the Large Underground Xenon (LUX) experiment for four different classes of mediators. This analysis extends the reach of liquid xenon-based DM search instruments to lower DM masses than has been achieved previously.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 29 November 2018
  • Revised 12 February 2019

DOI:https://doi.org/10.1103/PhysRevLett.122.131301

© 2019 American Physical Society

Physics Subject Headings (PhySH)

Particles & Fields

Authors & Affiliations

Click to Expand

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 122, Iss. 13 — 5 April 2019

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×