Strong Influence of Coadsorbate Interaction on CO Desorption Dynamics on Ru(0001) Probed by Ultrafast X-Ray Spectroscopy and Ab Initio Simulations

H. Xin, J. LaRue, H. Öberg, M. Beye, M. Dell’Angela, J. J. Turner, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, F. Hieke, D. Nordlund, W. F. Schlotter, G. L. Dakovski, M. P. Minitti, A. Föhlisch, M. Wolf, W. Wurth, H. Ogasawara, J. K. Nørskov, H. Öström, L. G. M. Pettersson, A. Nilsson, and F. Abild-Pedersen
Phys. Rev. Lett. 114, 156101 – Published 16 April 2015
PDFHTMLExport Citation

Abstract

We show that coadsorbed oxygen atoms have a dramatic influence on the CO desorption dynamics from Ru(0001). In contrast to the precursor-mediated desorption mechanism on Ru(0001), the presence of surface oxygen modifies the electronic structure of Ru atoms such that CO desorption occurs predominantly via the direct pathway. This phenomenon is directly observed in an ultrafast pump-probe experiment using a soft x-ray free-electron laser to monitor the dynamic evolution of the valence electronic structure of the surface species. This is supported with the potential of mean force along the CO desorption path obtained from density-functional theory calculations. Charge density distribution and frozen-orbital analysis suggest that the oxygen-induced reduction of the Pauli repulsion, and consequent increase of the dative interaction between the CO 5σ and the charged Ru atom, is the electronic origin of the distinct desorption dynamics. Ab initio molecular dynamics simulations of CO desorption from Ru(0001) and oxygen-coadsorbed Ru(0001) provide further insights into the surface bond-breaking process.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 28 October 2014

DOI:https://doi.org/10.1103/PhysRevLett.114.156101

© 2015 American Physical Society

Authors & Affiliations

H. Xin1,2, J. LaRue1, H. Öberg3, M. Beye1,4, M. Dell’Angela5, J. J. Turner6, J. Gladh3, M. L. Ng1, J. A. Sellberg1,3, S. Kaya1, G. Mercurio5, F. Hieke5, D. Nordlund7, W. F. Schlotter6, G. L. Dakovski6, M. P. Minitti6, A. Föhlisch4,8, M. Wolf9, W. Wurth5,10, H. Ogasawara7, J. K. Nørskov1,2, H. Öström3, L. G. M. Pettersson3, A. Nilsson1,3,7, and F. Abild-Pedersen1,*

  • 1SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
  • 2SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 95305, USA
  • 3Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
  • 4Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
  • 5University of Hamburg and Center for Free Electron Laser Science, Luruper Chausse 149, D-22761 Hamburg, Germany
  • 6Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
  • 7Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
  • 8Fakultät für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
  • 9Fritz-Haber Institute of the Max-Planck-Society, Faradayweg 4-6, D-14195 Berlin, Germany
  • 10DESY Photon Science, Notkestrasse 85, 22607 Hamburg, Germany

  • *abild@slac.stanford.edu

Article Text (Subscription Required)

Click to Expand

Supplemental Material (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 114, Iss. 15 — 17 April 2015

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×